Computing Derivatives of Matrix and Tensor
Expressions

Soren Laue

Friedrich-Schiller-University Jena, Germany

April 9%, 2021

Matrix calculus

Example:

> f(x) = x"Ax

Matrix calculus

Example:

Matrix calculus

Example:

Matrix calculus

Example:
> f(x) = x'Ax
> L= Ax+ATx

> Lf 9

dx?

Matrix calculus

Example:
> f(x) = x'Ax
> L= Ax+ATx

> LA+ AT

o

Matrix calculus

Example:

> f(x) =x"Ax

> % —Ax+ATx

> —{ A+AT

No general and coherent theory known!

Matrix calculus?

» wikipedia

Matrix calculus?

» wikipedia

» matrix cookbook

Matrix calculus?

» wikipedia
» matrix cookbook

» Matrix Differential Calculus with Applications in Statistics
(Magnus and Neudecker)

Matrix calculus?

» wikipedia
» matrix cookbook

» Matrix Differential Calculus with Applications in Statistics
(Magnus and Neudecker)

Contain only collection of recipes / lookup tables.

Matrix calculus — software?

» Mathematica

Matrix calculus — software?

» Mathematica

» Maple

Matrix calculus — software?

» Mathematica
» Maple

» TensorFlow, PyTorch (non-scalar output)

Matrix calculus — software?

» Mathematica
» Maple
» TensorFlow, PyTorch (non-scalar output)

> ..

Matrix calculus — software?

» Mathematica
» Maple
» TensorFlow, PyTorch (non-scalar output)

> ..

Cannot perform matrix calculus.

Matrix calculus

MatrixCalculus.org

Running times

gradient of f(x) = x" Ax

our approach our approach

= tensorflow = tensorflow
= theano = theano
= pytorch m— pytorch
= autograd

time /s

2x10% 3x10% 4x10*

10% 2x10% 3x10* 104

CpPU GPU

Running times

Hessian of f(x)

1072

1072

our approach
tensorflow
theano
pytorch
autograd

10° 2x10% 3x10° 4x10°
m

CPU ~ 100x

10!
10°:
0 107
o = OUr approach
£ —— tensorflow
w02 ™ theano
= pytorch
1073
-4
2x10% 3x10° 4x10° 6x10° 10%

m

GPU ~ 1000x

Running times

Hessian of f(U) = ||T — UV"||5

10%
= this paper, reverse mode
= this paper, compressed mode
TensorFlow

10?| === PyTorch

;s/
10°
1072 //

Time (s)

107*

—_—

1076

2x10% 3x10? 4x10? 6x 107
m

CPU ~ 100x

Time (s)

10-°

= this paper, reverse mode
= this paper, compressed mode
== TensorFlow w/ XLA

= PyTorch

—
I

2x10? 3x10% 4x10? 6x10% 10°
m

GPU ~ 1000x

Running times

Hessian of neural net (10 dense layers w/ ReLU, softmax cross-entropy)

= this paper, reverse mode
= this paper, compressed mode
== TensorFlow

= PyTorch

////

102 2x 102 3x 102 4x10%

n

CPU ~ 100x

Time (s)

= this paper, reverse mode
= this paper, compressed mode
== TensorFlow w/ XLA

= PyTorch

—

6x 10! 102 2x10?
n

GPU ~ 1000x

Matrix calculus

Algorithmic Details

Derivatives

Symbolic Differentiation vs. Automatic Differentiation

Derivatives
f(a) = log(sin(a?))

Derivatives

f(a) = log(sin(a®))
&

Derivatives

f(a) = log(sin(a®))
&

1
sin(a?)

Derivatives

f(a) = log(sin(a®))
&

- cos(a?)

sin(a?)

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

evaluation

@)

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

evaluation

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

evaluation

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

evaluation

()

Derivatives

f(a) = log(sin(a®))
&

- cos(a®) - 2a

sin(a?)

evaluation / forward pass
B — .

()

Derivatives
f(a) = log(sin(a?))
daf
da

@ cos(@) - 2a

evaluation / forward pass
B — .

(O ——)

derivative

Derivatives

f(a) = log(sin(a?))
&

- cos(a®) - 2a

sin(a?)

evaluation / forward pass
B — .

(.)? “ sin "

derivative

Derivatives
f(a) = log(sin(a?))
daf
da

@ cos(@) - 2a

evaluation / forward pass
B — .

(@

derivative

Derivatives
f(a) = log(sin(a?))
daf
da

@ cos(@) - 2a

evaluation / forward pass
B — .

()

derivative / backward pass

Derivatives

f(a) = log(sin(a?)) s1=a
df

da

@ cos(@) - 2a

evaluation / forward pass
B — .

(e

Derivatives

f(a) = log(sin(a?)) s =a?
df
da

@ cos(@) - 2a 57 = sin(a?)

evaluation / forward pass
B — .

()

Derivatives

f(a) = log(sin(a?)) s =a?
df

da

@ cos(@) - 2a 57 = sin(a?)

evaluation / forward pass
B — .

° 81 82

derivative / backward pass

(g

1
s2

Derivatives

f(a) = log(sin(a?)) s =a?
df
da

- cos(@®) - 2a 57 = sin(a?)

sin(a?)

evaluation / forward pass
B — .

° @ . @ - @ f
cos(s1) L

52

derivative / backward pass

Derivatives

f(a) = log(sin(a?)) s =a?
df

da

@ cos(@) - 2a 57 = sin(a?)

evaluation / forward pass
B — .

O G OO
2a cos(s1) L

52

derivative / backward pass

Derivatives

f(a) = log(sin(a?)) s =a?
df
da

@ cos(@) - 2a 57 = sin(a?)

evaluation / forward pass
B — .

(D O o) (e
2a cos(s1) é

derivative / backward pass

backpropagation / reverse mode autodiff

Derivatives
f(a,b) = log(sin(a - b))

Derivatives

f(a,b) = log(sin(a - b))

daf _
da ~

Derivatives

f(a,b) = log(sin(a - b))
daf _ 1

da sin(a-b)

Derivatives
f(a,b) = log(sin(a - b))

% = sin(1a~b) - cos(a - b)

Derivatives
f(a,b) = log(sin(a - b))

Z= sin(1a~b) ccos(a-b) - b

Derivatives
f(a,b) = log(sin(a - b))

a _ 1 . .
da — sin(ab)) COS(a b) b
daf _

ab

Derivatives
f(a,b) = log(sin(a - b))

d
é = sin(1a~b) -cos(a-b) - b
df _ 1

db ~ sin(a-b)

Derivatives
f(a,b) = log(sin(a - b))

%: sin(la.b) -cos(a-b) - b
% = sin(1a~b) - cos(a - b)

Derivatives
f(a,b) = log(sin(a - b))

%: sin(la.b) -cos(a-b) - b
%: sin(la.b) -cos(a-b) - a

Derivatives
f(a,b) = log(sin(a - b))

%: sin(1a~b) -cos(a-b) - b
%: m -cos(a-b) - a

()
0

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
@) s, =sin(a - b)
y =
%: m -cos(a-b) - a

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
(@?) s, =sin(a - b)
y =
4
£ = —Sin(la.b) -cos(a-b) - a

derivative / backward pass

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
(@?) s, =sin(a - b)
, =)
4
£ = —Sin(la.b) -cos(a-b) - a

derivative / backward pass

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
(@?) s, =sin(a - b)
, =)
4
£ = —Sin(la.b) -cos(a-b) - a

derivative / backward pass

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
(@?) s, =sin(a - b)
, =)
4
£ = —Sin(la.b) -cos(a-b) - a

derivative / backward pass

Derivatives
f(a,b) = log(sin(a - b))

s;=a-b
4 — L . cos(a-b) - b
da sin(a-b
(@?) s, =sin(a - b)
, =)
4
£ = —Sin(la.b) -cos(a-b) - a

derivative / backward pass

Derivatives

Symbolic Differentiation and Automatic Differentiation are basically the same

Derivatives

Symbolic Differentiation and Automatic Differentiation are basically the same

when allowing common subexpressions in symbolic differentiation.

Derivatives

Symbolic Differentiation and Automatic Differentiation are basically the same

when allowing common subexpressions in symbolic differentiation.

Warning: my personal view!

Derivatives

Symbolic Differentiation and Automatic Differentiation are basically the same

when allowing common subexpressions in symbolic differentiation.

Warning: my personal view!

common claim: symbolic differentiation suffers from expression swell

Matrix Calculus

Matrix Case

Neural Net, 1 Layer
L(x,W,b,y) = Ha(xTW+bT)—yTH2 xeR,ye{0,1}¢

Neural Net, 1 Layer

L(x,W,b,y) = ||oTW +57) — 7|

xGR",y S {Oal}d

Neural Net, 1 Layer

L(x,W,b,y) = ||oTW +57) — 7|

xGR",y S {Oal}d

Neural Net, 1 Layer

L(x,W,b,y) = ||oTW +57) — 7|

xGR",y S {Oal}d

Neural Net, 1 Layer

L(x,W,b,y) = ||oTW +57) — 7|

xGR",y S {Oal}d

Neural Net, 1 Layer

L(x,W,b,y) = ||oTW +57) — 7|

xGR",y S {Oal}d

o(s2) © (1 —0(s2))®

Neural Net, 1 Layer
L(x,W,b,y) = HO’(XTW +b")—yT

I

xeR,ye{0,1}

Neural Net, 1 Layer
Lo, W,b,y) = |lo(x"W +bT) —y7||

2

xGR",y S {Oal}d

T*x

Neural Net, 1 Layer
Lo, W,b,y) = |lo(x"W +bT) —y7||

2

xGR",y S {Oal}d

T*x

Neural Net, 1 Layer

L(x,W,b,y) = Ha(xTW—i—bT)—yTH2 xeR,ye{0,1}

a _

dw

i _

db

W (N D

1 925y L/
—1

T*x

Neural Net, 1 Layer

L(x,W,b,y) = HO’(XTW—i—bT)—yTHZ xeR,ye{0,1}

L — x5 (0(s2) © (1 —0(s2)) @ 254)

T*x

Neural Net, 1 Layer
L(x,W.b,y) = [lo(x"W +bT) = yT||* xe R, ye {01}

A — x % (0(s2) © (1 —0(s52)) © 254)

aw

Z_II; = O'(Sz)@(l —O'(Sz)) ® 2S4

1 284

T*x

Neural Net, 1 Layer

L(x,W,b,y) = HO’(XTW—i—bT)—yTHZ xeR,ye{0,1}

S5=x W+b'

A — x % (0(s2) © (1 —0(s2)) © 254)
ss=o(x"W+b")—y"

aw

Z_II; = O'(Sz)@(l —O'(Sz)) ® 2S4

T*x

Matrix Calculus

Matrix case is identical to scalar case, except for the type of
multiplications in the derivative.

Matrix Calculus

Matrix case is identical to scalar case, except for the type of
multiplications in the derivative.

This is the root of all the trouble with matrix calculus.

Matrix Calculus — Matrix Notation

First attempt: Use matrix notation for matrix calculus.

Matrix Calculus — Matrix Notation

First attempt: Use matrix notation for matrix calculus.

» 24 types of matrix multiplication needed, only for the linear matrix case

Matrix Calculus — Matrix Notation

First attempt: Use matrix notation for matrix calculus.

» 24 types of matrix multiplication needed, only for the linear matrix case

» ended up in a mess

Matrix Calculus — Matrix Notation

First attempt: Use matrix notation for matrix calculus.

» 24 types of matrix multiplication needed, only for the linear matrix case
» ended up in a mess

» led to buggy implementation in SymPy

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors

. . . . i
> Ricci notation precise, e.g., T

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors
» Ricci notation precise, e.g., T}

> Lk
> flx)=x", Vf(x)=7?

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors
» Ricci notation precise, €.g., T]k
> flx)=x", Vf(x) =7

» Vf(x) =6, not the identity matrix

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors

» Ricci notation precise, €.g., T]k

> flx)=x", Vf(x) =7

» Vf(x) =6, not the identity matrix

» first usable algorithm for matrix calculus

Details — Elements of Ricci calculus

matrix notation Ricci notation

t:1>><4><Q
=

Details — Elements of Ricci calculus

matrix notation Ricci notation

t:1>><4><Q
=

i il

Details — Elements of Ricci calculus

matrix notation Ricci notation

Ax Aj’: X
y'x yj xj.
AB AL B
yx' Y X
yOx yi X
A®B Al B

A - diag(x) Al x;

Details — Elements of Ricci calculus

matrix notation Ricci notation

Ax Ay
yx EY
AB Al B,
yx' Y X
yOx yi X
AGB AiB
A - diag(x) Al x;

Ricci notation is commutative.

Details
gradient of f(x) = x" Ax

Details
gradient of f(x) = x"Ax=x; Al ¥/

Details

gradient of f(x) = x"Ax=x; Al ¥/

Details
gradient of f(x) = x"Ax=x; Al ¥/

Details

gradient of f(x) = x"Ax=x; Al ¥/

Details

gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Details

gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Vf = ((«[0] - x[1]) - i) - &5 + v[2]

Details

gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Vf = ((x[0] - x[1]) - 6;) - 0 + v[2]
() 8-

J

Details

gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Vf = ((x[0] - x[1]) - 8i) - 6; + v[2]
(¢) 50+

5
(4) - 0a) - &+ xi 4]

Details
gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Vf = ((x[0] - x[1]) - 6;) - 0 + v[2]
() 8-

(4]) - 0a) - 6+ xi 4]
= (Ax)" +x'A

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» Ricci notation precise

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» Ricci notation precise

» differentiates between upper and lower indices, i.e., between covariance and
contravariance of a vector

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» Ricci notation precise

» differentiates between upper and lower indices, i.e., between covariance and
contravariance of a vector

Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» Ricci notation precise

» differentiates between upper and lower indices, i.e., between covariance and
contravariance of a vector

» often, this precision / distinction is not needed

Matrix Calculus — Einstein Notation

Use generalized Einstein notation for matrix calculus.

Matrix Calculus — Einstein Notation

Use generalized Einstein notation for matrix calculus.

» does not distinguish between upper and lower indices

Matrix Calculus — Einstein Notation

Use generalized Einstein notation for matrix calculus.

» does not distinguish between upper and lower indices

> T=Tlij, ..

Matrix Calculus — Einstein Notation

Use generalized Einstein notation for matrix calculus.

» does not distinguish between upper and lower indices
> T =T[ij,...]

» allows for compression of derivatives

Matrix calculus — Einstein notation

Let A, B and C be tensors. Any tensor/matrix multiplication can be written as:

Clss)= > Alsi]-Blsa],

(Sl ﬂsz)\S3

where 51, 55 and s3 are index sets.

Matrix calculus — Einstein notation

Let A, B and C be tensors. Any tensor/matrix multiplication can be written as:

Clss)= > Alsi]-Blsa],

(Sl OSQ)\S:;

where 51, 55 and s3 are index sets.

multiplication symbol
C= A*(Shsz&)B

Matrix calculus — Einstein notation

Let A, B and C be tensors. Any tensor/matrix multiplication can be written as:

Clss)= > Alsi]-Blsa],

(Sl OSQ)\S:;

where 51, 55 and s3 are index sets.

multiplication symbol
C= A*(Shsz&)B

einsum in NumPy

Matrix calculus — Einstein Notation

C=A *(51,52753) B

Matrix calculus — Einstein Notation

C - A *(;YI,SQ,S3) B

forward mode autodiff:

C=A * (51,5254,5354) B

where s is the new index set of .

Matrix calculus — Einstein Notation

C - A *(;YI,SQ,S}) B
forward mode autodiff:
C=A *(517S2S475354) B

where s is the new index set of .

reverse mode autodiff:

B=A * (51,5553,5552) C

where s5 is the new index set of % (f - output function).

Matrix calculus — Einstein Notation

C[s3] = g(A[s1])

Matrix calculus — Einstein Notation

C[s3] = g(A[s1])

forward mode autodiff:
C= g/(A) * (51,5154,5354) A

where s is the new index set of 2.

Matrix calculus — Einstein Notation

C[s3] = g(A[s1])
forward mode autodiff:
C= g/(A) * (51,5154,5354) A

where s is the new index set of 2.

reverse mode autodiff:

A= g'(A) *(51,5553,8551) c

where s5 is the new index set of % (f - output function).

Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

> T =T[ij,..|

Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

> T =T[ij,..|

» forward and reverse mode autodiff

Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

> T =TI[ij,...]
» forward and reverse mode autodiff

» cross-country mode for highest efficiency

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation

linear algebra notation not the right language for matrix and tensor calculus

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation
linear algebra notation not the right language for matrix and tensor calculus

first approach based on Ricci notation

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation
linear algebra notation not the right language for matrix and tensor calculus

first approach based on Ricci notation

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation
linear algebra notation not the right language for matrix and tensor calculus
first approach based on Ricci notation

second approach based on generalized Einstein notation

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation
linear algebra notation not the right language for matrix and tensor calculus
first approach based on Ricci notation

second approach based on generalized Einstein notation

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
A Simple and Efficient Tensor Calculus. (AAAI), 2020.

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation

linear algebra notation not the right language for matrix and tensor calculus
first approach based on Ricci notation

second approach based on generalized Einstein notation

simple, general, and efficient

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
A Simple and Efficient Tensor Calculus. (AAAI), 2020.

Matrix and Tensor Calculus — Summary

symbolic vs. automatic differentiation

linear algebra notation not the right language for matrix and tensor calculus
first approach based on Ricci notation

second approach based on generalized Einstein notation

simple, general, and efficient

MatrixCalculus.org

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
A Simple and Efficient Tensor Calculus. (AAAI), 2020.

