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Example:

> f(x) =x"Ax

> % —Ax+ATx

> —{ A+AT

No general and coherent theory known!
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» wikipedia
» matrix cookbook

» Matrix Differential Calculus with Applications in Statistics
(Magnus and Neudecker)

Contain only collection of recipes / lookup tables.
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Matrix calculus — software?

» Mathematica
» Maple
» TensorFlow, PyTorch (non-scalar output)

> ..

Cannot perform matrix calculus.
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Hessian of neural net (10 dense layers w/ ReLU, softmax cross-entropy)
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Symbolic Differentiation vs. Automatic Differentiation
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f(a) = log(sin(a?)) s =a?
df
da

@ cos(@) - 2a 57 = sin(a?)

evaluation / forward pass
B — .
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derivative / backward pass

backpropagation / reverse mode autodiff
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Derivatives

Symbolic Differentiation and Automatic Differentiation are basically the same

when allowing common subexpressions in symbolic differentiation.

Warning: my personal view!

common claim: symbolic differentiation suffers from expression swell
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Matrix case is identical to scalar case, except for the type of
multiplications in the derivative.

This is the root of all the trouble with matrix calculus.
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Matrix Calculus — Matrix Notation

First attempt: Use matrix notation for matrix calculus.

» 24 types of matrix multiplication needed, only for the linear matrix case
» ended up in a mess

» led to buggy implementation in SymPy
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Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» need for higher order tensors

» Ricci notation precise, €.g., T]k

> flx)=x", Vf(x) =7

» Vf(x) =6, not the identity matrix

» first usable algorithm for matrix calculus
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Ax Aj’: X
y'x yj xj.
AB AL B
yx' Y X
yOx yi X
A®B Al B

A - diag(x) Al x;




Details — Elements of Ricci calculus

matrix notation Ricci notation

Ax Ay
yx EY
AB Al B,
yx' Y X
yOx yi X
AGB AiB
A - diag(x) Al x;

Ricci notation is commutative.
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reverse mode:
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Details
gradient of f(x) = x"Ax=x; Al ¥/

reverse mode:

Vf = ((x[0] - x[1]) - 6;) - 0 + v[2]
() 8-

(4] ) - 0a) - 6+ xi 4]
= (Ax)" +x'A
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Matrix Calculus — Ricci Notation

Use Ricci notation for matrix calculus.

» Ricci notation precise

» differentiates between upper and lower indices, i.e., between covariance and
contravariance of a vector

» often, this precision / distinction is not needed
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Matrix Calculus — Einstein Notation

Use generalized Einstein notation for matrix calculus.

» does not distinguish between upper and lower indices
> T =T[ij,...]

» allows for compression of derivatives
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Matrix calculus — Einstein notation

Let A, B and C be tensors. Any tensor/matrix multiplication can be written as:

Clss)= > Alsi]-Blsa],

(Sl OSQ)\S:;

where 51, 55 and s3 are index sets.

multiplication symbol
C= A*(Shsz&)B

einsum in NumPy
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Matrix calculus — Einstein Notation

C - A *(;YI,SQ,S}) B
forward mode autodiff:
C=A *(517S2S475354) B

where s is the new index set of .

reverse mode autodiff:

B=A * (51,5553,5552) C

where s5 is the new index set of % (f - output function).
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Matrix calculus — Einstein Notation

C[s3] = g(A[s1])
forward mode autodiff:
C= g/(A) * (51,5154,5354) A

where s is the new index set of 2.

reverse mode autodiff:

A= g'(A) *(51,5553,8551) c

where s5 is the new index set of % (f - output function).
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Matrix Calculus — Einstein Notation

Use Einstein notation for matrix calculus.

> T =TI[ij,...]
» forward and reverse mode autodiff

» cross-country mode for highest efficiency
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symbolic vs. automatic differentiation

linear algebra notation not the right language for matrix and tensor calculus
first approach based on Ricci notation

second approach based on generalized Einstein notation

simple, general, and efficient

MatrixCalculus.org

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
Computing Higher Order Derivatives of Matrix and Tensor Expressions. (NeurIPS), 2018.

Soren Laue, Matthias Mitterreiter, Joachim Giesen.
A Simple and Efficient Tensor Calculus. (AAAI), 2020.




