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This talk gives a 
smorgasbord of topics 
on a multidisciplinary 

subject, so... 
Please ask questions!



Curse of Dimensionality: 
Quantum Physics Edition
◎ Quantum states of n particles 

described by nth order tensor 𝜓, 
generally requires O(dn) params

◎ Tensor networks developed to 
give quasi-local description of 𝜓 
(i.e. O(n) params), comes with 
intuitive graphical notation

First proposed in Roger Penrose, "Applications of negative 
dimensional tensors", Combinatorial Mathematics and its 
Applications (1971)



Tensor Diagrams I: 
Nodes as Tensor Cores

This diagram indicates a tensor with 
n modes, equivalent to NumPy:

 psi.shape == (d1,d2,...,dn)

Values of i's on edges give indexing:

 psi[i1,i2,...,in]



Tensor Diagrams II: 
Tensor Contraction

◎ Tensor contraction indicated by linked edges, which is associative 
generalization of vector inner product and matrix multiplication



Tensor Diagrams 
and Proof Theory

◎ Tensor diagrams are more than just 
intuitive pictures, they also admit 
diagram rewriting rules

◎ Different flavors of tensor diagrams 
come with different ingredients 
and rewriting rules, which are each 
sound and complete for some 
associated (monoidal) category
See Peter Selinger, "A survey of graphical languages for 
monoidal categories", arxiv:0908.3347

https://arxiv.org/pdf/0908.3347.pdf


Only the topology of a 
tensor network 

diagram matters, 
please disregard any 
variations in colors, 
drawing styles, etc.



Tensor Networks (TNs)
◎ Complex higher-order tensors are 

parameterized as contraction of 
smaller tensor cores, arranged in 
architecture-dependent graph

◎ Different TN architectures better 
suited for different tensors, deep 
ties to entanglement and geometry 
within quantum many-body physics

Orús, Practical Intro to Tensor Networks,
Annals of Physics 2014.

Simplest Example of TN: Low-rank matrix

Bond dimension
≈

Generalization of 
matrix rank



Different Names, Same TNs

◎ Many TN architectures 
independently discovered 
in applied mathematics, 
with different names

◎ Applied math tends to 
work with tensors  over      , 
and physics over 

(Miles Stoudenmire, https://tensornetwork.org/ )

Tucker

Not Tensor 
Network Diagram

https://tensornetwork.org/


Another TN Example: PGMs
◎ Probabilistic graphical 

models (PGMs) are also 
tensor networks

◎ Graphical notation for  
PGMs is dual to that of TNs

◎ This won't be discussed 
further here, but it's an 
interesting subject

PGM-style Notation
(variables as nodes)

TN-style Notation
(correlations as nodes)

For more details, see Elina Robeva and Anna Seigal, 
"Duality of Graphical Models and Tensor Networks", 2017.

Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac, "From probabilistic 
graphical models to generalized tensor networks for supervised learning", 2020



Matrix Product 
States (MPS)

◎ MPS defined as contraction of n 
third-order cores        on the line 
graph, yields n'th order tensor

◎ Bond dimensions          determine 
expressiveness of MPS. Arbitrary 
tensors can be described by MPS 
with (exponentially) large          

◎ Same model also called 
tensor train (TT) in 
applied math and ML



Uniform MPS (uMPS)
◎ MPS w/ identical cores (               ) are uniform MPS (uMPS), 

equivalent to weighted finite automata (WFA)

◎ Pair of "boundary" vectors                           needed at edges

◎ Standard MPS defines single fixed-order tensor       , while 
uMPS defines       , the direct sum of        for all n ≥ 0.       is 
equivalent to vector over         (all strings over alphabet      )

n MPS cores

Element of the free   
  tensor algebra  
          over        



uMPS and Parallel Eval
◎ Although uMPS is sequential model, evaluation of sequences 

of length n can be done in parallel time                  , with total 
computational cost of               

(vs. parallel. time            and cost                   for sequential eval)

n n



Probability Distributions 
are Tensors Too

◎ N-gram probability distributions                                           over 
words                 in finite lexicon are n'th order tensors

◎ More generally, probability distributions             over arbitrary 
strings             are equiv. to elements of free tensor algebra w/

(Non-negativity)                    ,    (Normalization) 



Tensor Networks for 
Language Modeling

◎ Idea: Since probability distributions            over strings define 
tensors with same "shape" as those generated by uMPS, so 
why not use trainable uMPS as language models?

◎ Issue: How can we ensure that our uMPS will generate a valid 
probability distribution? In general, for uMPS with cores over  
this problem is undecidable



Classical Solution:
Probabilistic Automata

◎ Choose all cores to take non- 
negative values in  

◎ Equivalent to hidden            
Markov models (HMMs),        
which have simple (classical) 
probabilistic semantics

                                          is normalization 
factor giving unnormalized prob. of 
all length-n strings 



Quantum Solution:
Born Machines (BMs)

◎ Use TNs to learn synthetic 
quantum states, probs given by 
Born rule,       

◎ Varied development, with 
uniform version equivalent to 
several other ML and WFA models

* * * * *

* ZY Han, J Wang, H Fan, L Wang, and P Zhang. Unsupervised gen. modeling using MPS. PRX 2018.
* AJ Ferris and G Vidal. Perfect sampling with unitary tensor networks. PRB 2012.
* MJ Zhao and H Jaeger. Norm-observable operator models. Neur Comp 2010.
* R. Bailly. Quadratic weighted automata. Asian Conf on ML 2011.
* V. Pestun, J. Terilla, & Y. Vlassopoulos. Language as an MPS. arXiv:1711.01416.
* S Srinivasan, S Adhikary, JM, G Rabusseau, and B Boots. Quantum TNs, Stochastic Processes, and WFA. arXiv:2010.10653.

Problem: How do we compute 
the normalization factor        ?



Efficient Normalization
◎ Normalization factors        

efficiently computable w/ 
transfer operators     ,    
maps derived from MPS 
core tensor

◎ To compute normalization,  
convert sum of products 
into product of sums using 
associativity of 
contraction

n n

* * * * *



Generalized 
Transfer Operators

◎ Similar techniques used 
w/ WFA, but for strings of 
all finite lengths

◎ Sums of probs over any 
subset of strings               
defines a generalized 
transfer operator

Length n:

All strings:

Arbitrary
subset R:

Problem: General subsets of 
strings R don't permit efficient 
summation. For which R is this 
generally possible?



Summing over    
Regular Subsets

◎ Normalization          of 
regular subsets                
of strings are efficiently 
computable, w/ recursive 
correspondence between 
regex R and generalized 
transfer operators

, where



Regular Expression 
(Regex) Sampling

Theorem 1: Consider a uMPS model 
and (unambiguous) regex R. Then 
there exists an efficient recursive 
sampling algorithm returning 
unbiased samples from R, with 
probs

Auto-
regressive

Fill in the 
blank

Special Cases of Regex Sampling

Sample conditioned on prefix p

Sample string of length exactly n
Fixed-len

Complete string with k disjoint blanks

Providing 
context Sample string of length exactly n

JM, Guillaume Rabusseau, and John Terilla, "Tensor Networks 
for Probabilistic Sequence Modeling", AISTATS 2021



Sequential TNs and 
Formal Grammars

◎ Obvious fact: Regular 
expressions are just a simple 
way to describe a regular 
grammar, which generalizes 
to more expressive 
context-free grammars 
(CFGs)

◎ Surprising fact: The 
recursive correspondence 
between transfer operators 
and regex extends to 
non-terminal symbols of a 
CFG, allows for efficient 
sampling from CF languages

This is ongoing work, with ties 
to formal languages, NLP, and 
maybe programming language 

theory. If you're curious 
and/or have ideas for cool 

applications of such methods, 
I'd love to talk sometime!



Any Questions?



Regex Regularization
◎ Also lets us compute exact 

prob of any regular subset R 

◎            =          /       is a 
differentiable function of 
uMPS model parameters, 
can be used in training as 
novel regularization loss

Avoided 
Structure

Desired 
structure

Equality of 
Probs

Examples of regularization losses

R = Strings containing an  
             offensive term 

R = Valid variable names in 
       programming language

Ri = Similar but differently gendered 
        sentences (gender bias)


