
Tensor Networks,
Probabilistic Modeling,
and Formal Grammar

Jacob Miller, Mila (UdeM)
April 1, 2021

Largely based on JM, G. Rabusseau, and J. Terilla,
"Tensor Networks for Probabilistic Sequence Modeling",

AISTATS 2021 (arXiv:2003.01039)

https://arxiv.org/pdf/2003.01039.pdf

This talk gives a
smorgasbord of topics
on a multidisciplinary

subject, so...
Please ask questions!

Curse of Dimensionality:
Quantum Physics Edition
◎ Quantum states of n particles

described by nth order tensor 𝜓,
generally requires O(dn) params

◎ Tensor networks developed to
give quasi-local description of 𝜓
(i.e. O(n) params), comes with
intuitive graphical notation

First proposed in Roger Penrose, "Applications of negative
dimensional tensors", Combinatorial Mathematics and its
Applications (1971)

Tensor Diagrams I:
Nodes as Tensor Cores

This diagram indicates a tensor with
n modes, equivalent to NumPy:

 psi.shape == (d1,d2,...,dn)

Values of i's on edges give indexing:

 psi[i1,i2,...,in]

Tensor Diagrams II:
Tensor Contraction

◎ Tensor contraction indicated by linked edges, which is associative
generalization of vector inner product and matrix multiplication

Tensor Diagrams
and Proof Theory

◎ Tensor diagrams are more than just
intuitive pictures, they also admit
diagram rewriting rules

◎ Different flavors of tensor diagrams
come with different ingredients
and rewriting rules, which are each
sound and complete for some
associated (monoidal) category
See Peter Selinger, "A survey of graphical languages for
monoidal categories", arxiv:0908.3347

https://arxiv.org/pdf/0908.3347.pdf

Only the topology of a
tensor network

diagram matters,
please disregard any
variations in colors,
drawing styles, etc.

Tensor Networks (TNs)
◎ Complex higher-order tensors are

parameterized as contraction of
smaller tensor cores, arranged in
architecture-dependent graph

◎ Different TN architectures better
suited for different tensors, deep
ties to entanglement and geometry
within quantum many-body physics

Orús, Practical Intro to Tensor Networks,
Annals of Physics 2014.

Simplest Example of TN: Low-rank matrix

Bond dimension
≈

Generalization of
matrix rank

Different Names, Same TNs

◎ Many TN architectures
independently discovered
in applied mathematics,
with different names

◎ Applied math tends to
work with tensors over ,
and physics over

(Miles Stoudenmire, https://tensornetwork.org/)

Tucker

Not Tensor
Network Diagram

https://tensornetwork.org/

Another TN Example: PGMs
◎ Probabilistic graphical

models (PGMs) are also
tensor networks

◎ Graphical notation for
PGMs is dual to that of TNs

◎ This won't be discussed
further here, but it's an
interesting subject

PGM-style Notation
(variables as nodes)

TN-style Notation
(correlations as nodes)

For more details, see Elina Robeva and Anna Seigal,
"Duality of Graphical Models and Tensor Networks", 2017.

Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac, "From probabilistic
graphical models to generalized tensor networks for supervised learning", 2020

Matrix Product
States (MPS)

◎ MPS defined as contraction of n
third-order cores on the line
graph, yields n'th order tensor

◎ Bond dimensions determine
expressiveness of MPS. Arbitrary
tensors can be described by MPS
with (exponentially) large

◎ Same model also called
tensor train (TT) in
applied math and ML

Uniform MPS (uMPS)
◎ MPS w/ identical cores () are uniform MPS (uMPS),

equivalent to weighted finite automata (WFA)

◎ Pair of "boundary" vectors needed at edges

◎ Standard MPS defines single fixed-order tensor , while
uMPS defines , the direct sum of for all n ≥ 0. is
equivalent to vector over (all strings over alphabet)

n MPS cores

Element of the free
 tensor algebra
 over

uMPS and Parallel Eval
◎ Although uMPS is sequential model, evaluation of sequences

of length n can be done in parallel time , with total
computational cost of

(vs. parallel. time and cost for sequential eval)

n n

Probability Distributions
are Tensors Too

◎ N-gram probability distributions over
words in finite lexicon are n'th order tensors

◎ More generally, probability distributions over arbitrary
strings are equiv. to elements of free tensor algebra w/

(Non-negativity) , (Normalization)

Tensor Networks for
Language Modeling

◎ Idea: Since probability distributions over strings define
tensors with same "shape" as those generated by uMPS, so
why not use trainable uMPS as language models?

◎ Issue: How can we ensure that our uMPS will generate a valid
probability distribution? In general, for uMPS with cores over
this problem is undecidable

Classical Solution:
Probabilistic Automata

◎ Choose all cores to take non-
negative values in

◎ Equivalent to hidden
Markov models (HMMs),
which have simple (classical)
probabilistic semantics

 is normalization
factor giving unnormalized prob. of
all length-n strings

Quantum Solution:
Born Machines (BMs)

◎ Use TNs to learn synthetic
quantum states, probs given by
Born rule,

◎ Varied development, with
uniform version equivalent to
several other ML and WFA models

* * * * *

* ZY Han, J Wang, H Fan, L Wang, and P Zhang. Unsupervised gen. modeling using MPS. PRX 2018.
* AJ Ferris and G Vidal. Perfect sampling with unitary tensor networks. PRB 2012.
* MJ Zhao and H Jaeger. Norm-observable operator models. Neur Comp 2010.
* R. Bailly. Quadratic weighted automata. Asian Conf on ML 2011.
* V. Pestun, J. Terilla, & Y. Vlassopoulos. Language as an MPS. arXiv:1711.01416.
* S Srinivasan, S Adhikary, JM, G Rabusseau, and B Boots. Quantum TNs, Stochastic Processes, and WFA. arXiv:2010.10653.

Problem: How do we compute
the normalization factor ?

Efficient Normalization
◎ Normalization factors

efficiently computable w/
transfer operators ,
maps derived from MPS
core tensor

◎ To compute normalization,
convert sum of products
into product of sums using
associativity of
contraction

n n

* * * * *

Generalized
Transfer Operators

◎ Similar techniques used
w/ WFA, but for strings of
all finite lengths

◎ Sums of probs over any
subset of strings
defines a generalized
transfer operator

Length n:

All strings:

Arbitrary
subset R:

Problem: General subsets of
strings R don't permit efficient
summation. For which R is this
generally possible?

Summing over
Regular Subsets

◎ Normalization of
regular subsets
of strings are efficiently
computable, w/ recursive
correspondence between
regex R and generalized
transfer operators

, where

Regular Expression
(Regex) Sampling

Theorem 1: Consider a uMPS model
and (unambiguous) regex R. Then
there exists an efficient recursive
sampling algorithm returning
unbiased samples from R, with
probs

Auto-
regressive

Fill in the
blank

Special Cases of Regex Sampling

Sample conditioned on prefix p

Sample string of length exactly n
Fixed-len

Complete string with k disjoint blanks

Providing
context Sample string of length exactly n

JM, Guillaume Rabusseau, and John Terilla, "Tensor Networks
for Probabilistic Sequence Modeling", AISTATS 2021

Sequential TNs and
Formal Grammars

◎ Obvious fact: Regular
expressions are just a simple
way to describe a regular
grammar, which generalizes
to more expressive
context-free grammars
(CFGs)

◎ Surprising fact: The
recursive correspondence
between transfer operators
and regex extends to
non-terminal symbols of a
CFG, allows for efficient
sampling from CF languages

This is ongoing work, with ties
to formal languages, NLP, and
maybe programming language

theory. If you're curious
and/or have ideas for cool

applications of such methods,
I'd love to talk sometime!

Any Questions?

Regex Regularization
◎ Also lets us compute exact

prob of any regular subset R

◎ = / is a
differentiable function of
uMPS model parameters,
can be used in training as
novel regularization loss

Avoided
Structure

Desired
structure

Equality of
Probs

Examples of regularization losses

R = Strings containing an
 offensive term

R = Valid variable names in
 programming language

Ri = Similar but differently gendered
 sentences (gender bias)

