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@ Equations are at the heart of mathamatical reasoning.

@ Reasoning about programs is also based on program
equivalences.

@ The dawning of the age of quantitative reasoning.

@ We want quantitative analogues of algebraic reasoning.
@ (Pseudo)metrics instead of equivalence relations.

@ Equality indexed by a real number =..
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@ Approximate equations: s = t, s is within ¢ of .
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The basic idea

@ Approximate equations: s = t, s is within ¢ of .

@ Definitely not an equivalence relation;

@ it defines a uniformity (but we won'’t stress this point of view).
@ Quantitative analogue of equational reasoning.

@ completeness results, universality of free algebras, Birkhoff-like
variety theorem, monads ....
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Finitary equational theories

@ Signature Q = {(Op;,n;)|[i=1...k}
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Finitary equational theories

@ Signature Q = {(Op;,n;)|[i=1...k}

@ Terms t ::==x|Op(t1,...,t,)

@ Equations s = ¢

@ Axioms, sets of equations Ax

@ Deduction Ax s =1t

@ Usual rules for deduction: equivalence relation, congruence,...
@ Theories: set of equations closed under deduction.
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Algebras equationally |

@ We assume that that there is one set of “basic things” —
one-sorted algebras.
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Algebras equationally |

@ We assume that that there is one set of “basic things” —
one-sorted algebras.

@ Signature: a set 2 of operations, each with a fixed arity n € N.
@ Everything has finite arity.

@ As Q-algebra A is a set A to interpret the basic sort and, for each
operation f of arity n a function f4 : A" — A.

Panangaden Quantitative Equational Reasoning Montreal Feb 2021 5/34



Algebras equtionally Il

@ Can define homomorphisms and subalgebras easily.
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Algebras equtionally Il

@ Can define homomorphisms and subalgebras easily.

@ What about equations that are required to hold?

@ Given a set X we define the term algebra generated by X, TX
@ The elements of X are in 7X.

@ Ifr,...,1, arein TX and f has arity n then f(zy,...,t,) is in TX.
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Algebras from equations |

@ Want to write things like Vx, y, z;f(x,f(y,2)) = f(f(x,), 2).
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Algebras from equations |

@ Want to write things like Vx,y, z; f(x,f (v, 2)) = f(f(x,¥),2).

@ X, set of variables.

@ Lets,tbe terms in TX, we say the equation s = ¢ holds in an
Q-algebra A if for every homomorphism i : TX — A we have
h(s) = h(t) where, in the latter, = means identity.

@ Let S be a set of equations between pairs of terms in TX. We
define a congruence relation ~s on TX in the evident way.
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Algebras from equations Il

@ Easy to check thatif ty ~g s1,...,t, ~s s, then
flt,....ty) ~sf(s1,...,s,) we can define f.; on TX/ ~s.
@ Let [¢] be an equivalence class of ~g; f ([t1], - . ., [tz]) is well

defined by [f(t1,...,t)].

@ A class of Q-algebras satisfying a set of equations is called a
variety of algebras (not the same as an algebraic variety!).

@ When are a set of equations bad? If we can derive x =y from §
then the only algebras have one element.

Panangaden Quantitative Equational Reasoning Montreal Feb 2021 8/34



@ Monoids, groups, rings, lattices, boolean algebras are all
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@ Monoids, groups, rings, lattices, boolean algebras are all
examples.
@ Vector spaces have two sorts.

@ Fields are annoying because we have to say x # 0 implies x~!
exists. Fields do not form an equational variety.

@ Sometimes we need to state conditional equations; these are
called Horn clauses. Example: cancellative monoids,
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Example: barycentric algebras (Stone 1949)

@ Signature:

{+ele € [0,1]}
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Example: barycentric algebras (Stone 1949)

@ Signature:
{+cle € ]0,1]}
@ Axioms:
(B))Ft+17 =t
(By) Ft4et=t
(SO b t+ct =1 +1_ct
(SA) (t +6 ) +€/ t// - t+€€/ (t/ +6/766/ t//)

1—ee’
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Universal properties

@ Let K(Q2,S) be the collection of algebras satisfying the equations
in S. K(©2,S) becomes a category if we take the morphisms to be
Q-homomorphisms.
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Universal properties

@ Let K(Q2,S) be the collection of algebras satisfying the equations
in S. K(©2,S) becomes a category if we take the morphisms to be
Q-homomorphisms.

@ Let X be a set of generators. We write T[X] for TX/ ~s. There is a
map nx : X — T[X] given by nx(x) = [x].

@ Universal property.

Set K(Q, )
X —" Tix] T[X]
\ h '
\ Y
A A
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Variety theorem

A collection of algebras is a variety of algebras if and only if it is closed
under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses:
quasivariety theorems.
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Variety theorem

A collection of algebras is a variety of algebras if and only if it is closed
under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses:
quasivariety theorems.

Consider Z, x Z,. It’s not a field because, e.g. (1,0) x (0,1) = (0,0).
Hence fields cannot be described by equations!
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@ Signature (2, variables X we get terms TX.
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Quantitative equations

@ Signature (2, variables X we get terms TX.
@ Quantitative equations: V(TX):

s=ct, s,t€TX, e€Qn]0,1]

@ A substitution o is a map X — TX; we write X(X) for the set of
substitutions.
@ Any o extends to a map TX — TX.

@ Quantitative inferences: £(TX) = Py, (V(TX)) x V(TX)

{s1 :51 tl?"';sn :En tn}|—s:5t
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Deducibility relations

(Refl) OFt=¢t
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Deducibility relations

(Refl) OFt=¢t
(Symm) {r=cs}ts=ct
(Triang) {t =cs,s = u} bt =cic u.
(Max) Fore >0, {tr=cs}Ft=cic s
(Cont) Foralle >0, {t=o s | & > e} bt =.s. Infinitary!
(NExp) Forf:ne€Q,
{t =c 51, sty =c su} Ef(t1, 15y 1y) =< f(S1,-.Si, 8n)
(Subst) If o € ¥(X), T'Ft = simplies o(T") - o(t) = o(s).
(Cut) f"'-¢forall g e IV and IV F 4, then T' F ).
(Assumpt) If ¢ € T', then I - ¢.
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Quantitative equational theories

@ Given S C £(TX), Fs: smallest deducibility relation containing S.
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Quantitative equational theories

@ Given S C £(TX), Fs: smallest deducibility relation containing S.
@ Equational theory: U = 5 E(TX).
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Quantitative algebras

@ (: signature; A = (A,d),
A an Q-algebra and (A, d) a metric space.
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Quantitative algebras

@ (: signature; A = (A,d),
A an Q-algebra and (A, d) a metric space.
@ All functions in Q are nonexpansive.
@ Morphisms are Q2-algebra homomorphisms that are nonexpansive.
@ TX is an Q-algebra. o : TX — A, Q-homomorphism.
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Quantitative algebras Il

@ (A,d) satisfies {s; =, t;/i=1,...,n} Fs=tif

Vo, d(o(si),o(ti)) < e, i=1,...,n
implies
d(o(s),0(r)) <e.

@ Wewrite {s; =, t;/i=1,...,n} Fas=:t
e We write K(U, 2) for the algebras satisfying U.
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A metric on TX
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A metric on TX

d4(s,t) = infle | O b s = 1 € U} J

@ Why not use the following?

d(s,1) = inf{e | VV € Pr(V(X)),V F s = t € U} J

@ They are the same!

@ The (pseudo)metric can take on infinite values.

@ The kernel is a congruence for (.

@ If we take the quotient we get an (extended) metric space.
@ The resulting algebra is in K(92,4).

@ We can do this for any set M of generators and produce a “free”
quantitative algebra.
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Completeness

VA e KU,Q),T Eq¢ifandonly if [['F @] € U. ]
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Completeness

VA e KU,Q),T Eq¢ifandonly if [['F @] € U. )

@ Analogue of the usual completeness theorem for equational logic.
@ Right to left is by definition.
@ Left to right is by a model construction.

@ The proof needs to deal with quantitative aspects and uses the
infinitary axiom.
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Free construction from a metric space

@ Starting from a metric space (M, d) we can define TM by adding
constants for each m € M
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Free construction from a metric space

@ Starting from a metric space (M, d) we can define TM by adding
constants for each m € M

@ and axioms () - m =, n for every rational e such that d(m,n) < e.

@ Call this extended signature €2, and the extended theory Uy,.

@ Any algebra in K(Uy, Uy ) can be viewed as an algebra in K(2, i)
by forgetting about the interpretation of the constants from M.

@ Given any a : M — A non-expansive we can turn A = (A,d) into
an algebra in K(4,Uy) by interpreting each m € M as a(m) € A.
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Universal property

Met K(Q,U)
(M, d") " T[M] TM]
| |
X U L
\ ]
(A,d") A
Uy is consistent if and only if the map 7y, is an isometry. J
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Barycentric algebras again

@ Q= {+.:2le €0, 1]}; uncountably many operations!
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@ Bl) OFx+;y=0x
(B2) DFx+,x=¢x

o
@ (SC) DbFx+.y=0y+i-—ex
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@ Q= {+.:2le €0, 1]}; uncountably many operations!

@ (Bl) OFx+1y=0x

@ B2) DFx+4.x=0x

@ (SC) DFx+ey=0y+iex

@ (SA)(x +¢, ¥) e, 2=0 X +ee, (¥ +er-e1e, 2) Where eq, ez € (0,1)

I—ejer
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@ Q= {+.:2le €0, 1]}; uncountably many operations!
o (Bl) @Fx+1y:ox

@ B2) DFx+4.x=0x

@ (SC) DFx+,y=0y—+i—ex

@ (SA)(x+e, ) +ey 2=0X Fepe, (¥ +e12__:11:22 z) where ej,e; € (0,1)
@ (LI) x+,z=-y+.zWheree<ecQn0,1]
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Barycentric algebras again

@ Q= {+.:2le €0, 1]}; uncountably many operations!

@ (Bl) OFx+1y=0x

@ B2) DFx+e.x=px

(SC) DhFx+ey=0y+i—ex

(SA)(x 4, ¥) e 2=0 X Fee, (¥ Her=e1e, 2) Where eq,e2 € (0,1)

I—ejer
@ (LI) x+,z=-y+.zWheree<ecQn0,1]

@ The last equation uses one of the new indexed equations in a
nontrivial way.
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@ Q= {+.:2le €0, 1]}; uncountably many operations!
@ (Bl) OFx+1y=0x
@ B2) DFx+4.x=0x
(SC) DhFx+ey=0y+i—ex
)

o
@ (SA)(x+e, ¥) +ey 2=0X +eje, (Y ter—c1e, 7) Where ej,ep € (0,1)

I—ejer
@ (LI) x+,z=-y+.zWheree<ecQn0,1]

@ The last equation uses one of the new indexed equations in a
nontrivial way.

@ We call it the left-invariant axiom scheme; LIB algebras for short.
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@ Q= {+.:2le €0, 1]}; uncountably many operations!

@ Bl) OFx+;y=0x

@ B2) DFx+e.x=px

(SC) DhFx+ey=0y+i—ex

(SA)(x +e; ) +ey 2=0 X tejey (V Tea-e1e 27) Where eg, ez € (0,1)

I—ejer
@ (LI) x+,z=-y+.zWheree<ecQn0,1]

@ The last equation uses one of the new indexed equations in a
nontrivial way.

@ We call it the left-invariant axiom scheme; LIB algebras for short.
@ What does this axiomatize?
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Barycentric algebras again

@ Q= {+.:2le €0, 1]}; uncountably many operations!

@ Bl) OFx+;y=0x

@ B2) DFx+e.x=px

(SC) DFxtey=oy+i-ex

(SA)(x +¢, ¥) +e, 2 =0 X Fejey (¥ +eymeie, 2) Where eg, ez € (0, 1)

I—ejer
@ (LI) x+,z=-y+.zWheree<ecQn0,1]

@ The last equation uses one of the new indexed equations in a
nontrivial way.

@ We call it the left-invariant axiom scheme; LIB algebras for short.
@ What does this axiomatize?
@ The total variation metric on probability distributions.
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Total variation metric

TV(p,q) = sup|p(E) = 4(E)] J
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@ It measures the size of the set on which p, ¢ disagree the most.
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Total variation metric

TV(p,q) = sup|p(E) = 4(E)] J

@ It measures the size of the set on which p, ¢ disagree the most.

@ There is a duality theorem that gives it as a minimum rather than a
maximum.
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Couplings

@ Let B(M, X)) be the Borel measures on a metric space M with
Borel algera .
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measure w on (M x M, ¥ ® ¥) such that for all E € X:
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Couplings

@ Let B(M, X)) be the Borel measures on a metric space M with
Borel algera .

@ We have a product space M x M with product o-algebra > @ 3
and Borel measures B(M x M, ¥ ® %).

@ Given probability measures p, g a coupling is a probability
measure w on (M x M, ¥ ® ¥) such that for all E € X:

WwEXxM)=pE) and w(M xE)=q(E).

@ C(p,q) is the set of couplings for (p, q).
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Couplings Il

@ Write A for the diagonal in M x M.
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Couplings Il

@ Write A for the diagonal in M x M.
@ TV duality: TV(p, g) = min {w(A)|w € C(p, q)}; min is attained.
@ Convex combinations of couplings are couplings.

@ Splitting lemma: If p, ¢ are Borel probability measures on M and
e =T(p,q). There are p’, ¢, r such that

p=ep'+(1—e)randg=eq + (1 —e)r.
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Freely generated LIB algebra

@ We know there is a freely generated LIB algebra from a metric
space M. What is it concretely?
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Freely generated LIB algebra

@ We know there is a freely generated LIB algebra from a metric
space M. What is it concretely?
@ Let II[M] be the LIB algebra obtained by taking the

finitely-supported probability measures on M and interpreting +.
as convex combination.
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Freely generated LIB algebra

@ We know there is a freely generated LIB algebra from a metric
space M. What is it concretely?

@ Let II[M] be the LIB algebra obtained by taking the
finitely-supported probability measures on M and interpreting +.
as convex combination.

@ We endow it with the total-variation metric to make it a quantitative
algebra.
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Freely generated LIB algebra Il

@ Theorem: TI[M] € K(B,u*).
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Freely generated LIB algebra Il

@ Theorem: TI[M] € K(B,u*).
@ Use convexity and splitting lemma to show LI and Nexp.
@ Theorem: II[M] is the free algebra generated by M.

@ Use the embedding of convex spaces into vector spaces (Stone
49).
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Freely generated LIB algebra Il

@ Theorem: TI[M] € K(B,u*).
@ Use convexity and splitting lemma to show LI and Nexp.
@ Theorem: II[M] is the free algebra generated by M.

@ Use the embedding of convex spaces into vector spaces (Stone
49).
@ The axioms give rise to the total-variation metric.
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Interpolative barycentric algebras

@ Same signature as barycentric algebras.
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° (IB,)
{r=c v, X =, Y} Fxdex =5y +.Y,
where (e] + (1 — e)eh)!/P < 6.
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where (e] + (1 — e)eh)!/P < 6.
@ Now we need assumptions in the equation.
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Interpolative barycentric algebras

@ Same signature as barycentric algebras.
@ Axioms (B1), (B2), (SC), (SA); drop (LI).
° (IB,)
{r=c v, X =, Y} Fxdex =5y +.Y,
where (e] + (1 — e)eh)!/P < 6.
@ Now we need assumptions in the equation.
@ If p =1 we get

{x =¢, y,xl =, yl} I_X+e X, =5y —|—e y,,

where es; + (1 — e)ex < 0.
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Picture of 1B,
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Kantorovich (Wasserstein) metric

Let (M, d) be a complete separable metric space and p > 1.

Wh(p,v) = inf{ {/MXM P (x, y)dw] l/p‘w € C(u, 1/)}
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Kantorovich (Wasserstein) metric

Let (M, d) be a complete separable metric space and p > 1.

Wh(p,v) = inf{ {/MXM dp(x,y)dw] l/p‘w € C(u, 1/)}

Ka(ji,v) = sup{‘ [ren- [

Kq(p,v) = min{ [/MXM d(x,y)dw} ‘w € C(p, y)}

Panangaden Quantitative Equational Reasoning Montreal Feb 2021 30/34




@ We take the finitely supported measures on M and interpret it as a
barycentric algebra as before.
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@ We take the finitely supported measures on M and interpret it as a
barycentric algebra as before.

@ We give it the Kantorovich metric and show that we get an IB
algebra.

@ This uses the definition of the W/, metrics as an inf and convexity
of couplings.

@ We prove a splitting lemma for this case and show that we get the
free algebra by similar, but more involved arguments.
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@ We take the finitely supported measures on M and interpret it as a
barycentric algebra as before.

@ We give it the Kantorovich metric and show that we get an IB
algebra.

@ This uses the definition of the W/, metrics as an inf and convexity
of couplings.

@ We prove a splitting lemma for this case and show that we get the
free algebra by similar, but more involved arguments.

@ How do we lift it to the continuous case?
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Weak convergence

@ Suppose we have a sequence of measures {y;|i € I}. What does
it mean to converge?
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@ For a “suitable” class of functions:

[ rani— [ e
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Weak convergence

@ Suppose we have a sequence of measures {y;|i € I}. What does
it mean to converge?

@ For a “suitable” class of functions:

[ rani— [ e

@ For Kantorovich use contractive functions; for W, use a class of
functions whose growth is controlled by d and p.
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Weak convergence
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it mean to converge?

@ For a “suitable” class of functions:

[ rani— [ e

@ For Kantorovich use contractive functions; for W, use a class of
functions whose growth is controlled by d and p.

@ The Kantorovich metrics give the topology of weak convergence.
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Weak convergence

@ Suppose we have a sequence of measures {y;|i € I}. What does
it mean to converge?

@ For a “suitable” class of functions:

[ rani— [ e

@ For Kantorovich use contractive functions; for W, use a class of
functions whose growth is controlled by d and p.

@ The Kantorovich metrics give the topology of weak convergence.

@ The finitely supported probability measures are dense in the
space of all probability measures.
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Complete separable metric spaces

@ A separable metric space has a countable dense subset.
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Complete separable metric spaces

@ A separable metric space has a countable dense subset.

@ Define A[M] to be the space of all Borel probability measures on a
complete separable metric space. We give it the W) metric and
interpret +, as convex combination.
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Complete separable metric spaces

@ A separable metric space has a countable dense subset.

@ Define A[M] to be the space of all Borel probability measures on a
complete separable metric space. We give it the W) metric and
interpret +, as convex combination.

@ This gives an IB algebra.

@ If we construct the term algebra T[M] as before and complete it
we get an algebra isomorphic to A[M].
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Complete separable metric spaces

@ A separable metric space has a countable dense subset.

@ Define A[M] to be the space of all Borel probability measures on a
complete separable metric space. We give it the W) metric and
interpret +, as convex combination.

@ This gives an IB algebra.

@ If we construct the term algebra T[M] as before and complete it
we get an algebra isomorphic to A[M].

@ In this case we get a monad on CSMet;: complete separable
1-bounded metric spaces.
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Conclusions

@ Quantitative equations give a handle on otherwise arcane things
like the Kantorovich metrics.
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Conclusions

@ Quantitative equations give a handle on otherwise arcane things
like the Kantorovich metrics.

@ Other examples: Hausdorff metric, pointed barycentric algebras.

@ Recent work: Variety theorems (LICS 2017), Markov processes by
combining theories (LICS 2018), Fixed-point operators (2020),
Tensor of theories (2020)
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