Quantitative Equational Reasoning

Prakash Panangaden
School of Computer Science; McGill University and
Mila

Mila RG
26th Feb 2021

Summary

- Equations are at the heart of mathamatical reasoning.

Summary

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.

Summary

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.
- The dawning of the age of quantitative reasoning.

Summary

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.
- The dawning of the age of quantitative reasoning.
- We want quantitative analogues of algebraic reasoning.

Summary

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.
- The dawning of the age of quantitative reasoning.
- We want quantitative analogues of algebraic reasoning.
- (Pseudo)metrics instead of equivalence relations.

Summary

- Equations are at the heart of mathamatical reasoning.
- Reasoning about programs is also based on program equivalences.
- The dawning of the age of quantitative reasoning.
- We want quantitative analogues of algebraic reasoning.
- (Pseudo)metrics instead of equivalence relations.
- Equality indexed by a real number $={ }_{\epsilon}$.

The basic idea

- Approximate equations: $s={ }_{\varepsilon} t, s$ is within ε of t.

The basic idea

- Approximate equations: $s={ }_{\varepsilon} t, s$ is within ε of t.
- Definitely not an equivalence relation;

The basic idea

- Approximate equations: $s={ }_{\varepsilon} t, s$ is within ε of t.
- Definitely not an equivalence relation;
- it defines a uniformity (but we won't stress this point of view).

The basic idea

- Approximate equations: $s={ }_{\varepsilon} t, s$ is within ε of t.
- Definitely not an equivalence relation;
- it defines a uniformity (but we won't stress this point of view).
- Quantitative analogue of equational reasoning.

The basic idea

- Approximate equations: $s={ }_{\varepsilon} t, s$ is within ε of t.
- Definitely not an equivalence relation;
- it defines a uniformity (but we won't stress this point of view).
- Quantitative analogue of equational reasoning.
- completeness results, universality of free algebras, Birkhoff-like variety theorem, monads

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$
- Equations $s=t$

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$
- Equations $s=t$
- Axioms, sets of equations $A x$

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$
- Equations $s=t$
- Axioms, sets of equations $A x$
- Deduction $A x \vdash s=t$

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$
- Equations $s=t$
- Axioms, sets of equations $A x$
- Deduction $A x \vdash s=t$
- Usual rules for deduction: equivalence relation, congruence,...

Finitary equational theories

- Signature $\Omega=\left\{\left(O p_{i}, n_{i}\right) \mid i=1 \ldots k\right\}$
- Terms $t::==x \mid O p\left(t_{1}, \ldots, t_{n}\right)$
- Equations $s=t$
- Axioms, sets of equations $A x$
- Deduction $A x \vdash s=t$
- Usual rules for deduction: equivalence relation, congruence,...
- Theories: set of equations closed under deduction.

Algebras equationally I

- We assume that that there is one set of "basic things" -one-sorted algebras.

Algebras equationally I

- We assume that that there is one set of "basic things" -one-sorted algebras.
- Signature: a set Ω of operations, each with a fixed arity $n \in \mathbb{N}$.

Algebras equationally I

- We assume that that there is one set of "basic things" -one-sorted algebras.
- Signature: a set Ω of operations, each with a fixed arity $n \in \mathbb{N}$.
- Everything has finite arity.

Algebras equationally I

- We assume that that there is one set of "basic things" -one-sorted algebras.
- Signature: a set Ω of operations, each with a fixed arity $n \in \mathbb{N}$.
- Everything has finite arity.
- As Ω-algebra \mathcal{A} is a set A to interpret the basic sort and, for each operation f of arity n a function $f_{\mathcal{A}}: A^{n} \rightarrow A$.

Algebras equtionally II

- Can define homomorphisms and subalgebras easily.

Algebras equtionally II

- Can define homomorphisms and subalgebras easily.
- What about equations that are required to hold?

Algebras equtionally II

- Can define homomorphisms and subalgebras easily.
- What about equations that are required to hold?
- Given a set X we define the term algebra generated by $X, T X$

Algebras equtionally II

- Can define homomorphisms and subalgebras easily.
- What about equations that are required to hold?
- Given a set X we define the term algebra generated by $X, T X$
- The elements of X are in $T X$.

Algebras equtionally II

- Can define homomorphisms and subalgebras easily.
- What about equations that are required to hold?
- Given a set X we define the term algebra generated by $X, T X$
- The elements of X are in $T X$.
- If t_{1}, \ldots, t_{n} are in $T X$ and f has arity n then $f\left(t_{1}, \ldots, t_{n}\right)$ is in $T X$.

Algebras from equations I

- Want to write things like $\forall x, y, z ; f(x, f(y, z))=f(f(x, y), z)$.

Algebras from equations I

- Want to write things like $\forall x, y, z ; f(x, f(y, z))=f(f(x, y), z)$.
- X, set of variables.

Algebras from equations I

- Want to write things like $\forall x, y, z ; f(x, f(y, z))=f(f(x, y), z)$.
- X, set of variables.
- Let s, t be terms in $T X$, we say the equation $s=t$ holds in an Ω-algebra \mathcal{A} if for every homomorphism $h: T X \rightarrow \mathcal{A}$ we have $h(s)=h(t)$ where, in the latter, = means identity.

Algebras from equations I

- Want to write things like $\forall x, y, z ; f(x, f(y, z))=f(f(x, y), z)$.
- X, set of variables.
- Let s, t be terms in $T X$, we say the equation $s=t$ holds in an Ω-algebra \mathcal{A} if for every homomorphism $h: T X \rightarrow \mathcal{A}$ we have $h(s)=h(t)$ where, in the latter, = means identity.
- Let S be a set of equations between pairs of terms in $T X$. We define a congruence relation \sim_{S} on $T X$ in the evident way.

Algebras from equations II

- Easy to check that if $t_{1} \sim_{S} s_{1}, \ldots, t_{n} \sim_{S} s_{n}$ then $f\left(t_{1}, \ldots, t_{n}\right) \sim_{S} f\left(s_{1}, \ldots, s_{n}\right)$ we can define $f_{\sim_{S}}$ on $T X / \sim_{S}$.

Algebras from equations II

- Easy to check that if $t_{1} \sim_{S} s_{1}, \ldots, t_{n} \sim_{S} s_{n}$ then $f\left(t_{1}, \ldots, t_{n}\right) \sim_{S} f\left(s_{1}, \ldots, s_{n}\right)$ we can define $f_{\sim_{s}}$ on $T X / \sim_{S}$.
- Let $[t]$ be an equivalence class of $\sim_{S} ; f_{\sim_{S}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$ is well defined by $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]$.

Algebras from equations II

- Easy to check that if $t_{1} \sim_{S} s_{1}, \ldots, t_{n} \sim_{S} s_{n}$ then $f\left(t_{1}, \ldots, t_{n}\right) \sim_{S} f\left(s_{1}, \ldots, s_{n}\right)$ we can define $f_{\sim_{s}}$ on $T X / \sim_{S}$.
- Let $[t]$ be an equivalence class of $\sim_{S} ; f_{\sim_{S}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$ is well defined by $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]$.
- A class of Ω-algebras satisfying a set of equations is called a variety of algebras (not the same as an algebraic variety!).

Algebras from equations II

- Easy to check that if $t_{1} \sim_{s} s_{1}, \ldots, t_{n} \sim_{S} s_{n}$ then $f\left(t_{1}, \ldots, t_{n}\right) \sim_{S} f\left(s_{1}, \ldots, s_{n}\right)$ we can define $f_{\sim_{S}}$ on $T X / \sim_{S}$.
- Let $[t]$ be an equivalence class of $\sim_{S} ; f_{\sim_{S}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$ is well defined by $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]$.
- A class of Ω-algebras satisfying a set of equations is called a variety of algebras (not the same as an algebraic variety!).
- When are a set of equations bad? If we can derive $x=y$ from S then the only algebras have one element.

Examples

- Monoids, groups, rings, lattices, boolean algebras are all examples.

Examples

- Monoids, groups, rings, lattices, boolean algebras are all examples.
- Vector spaces have two sorts.

Examples

- Monoids, groups, rings, lattices, boolean algebras are all examples.
- Vector spaces have two sorts.
- Fields are annoying because we have to say $x \neq 0$ implies x^{-1} exists. Fields do not form an equational variety.

Examples

- Monoids, groups, rings, lattices, boolean algebras are all examples.
- Vector spaces have two sorts.
- Fields are annoying because we have to say $x \neq 0$ implies x^{-1} exists. Fields do not form an equational variety.
- Sometimes we need to state conditional equations; these are called Horn clauses. Example: cancellative monoids, $x \cdot y=x \cdot z \vdash y=z$.

Example: barycentric algebras (Stone 1949)

- Signature:

$$
\left\{+_{\epsilon} \mid \epsilon \in[0,1]\right\}
$$

Example: barycentric algebras (Stone 1949)

- Signature:

$$
\left\{+_{\epsilon} \mid \epsilon \in[0,1]\right\}
$$

- Axioms:

$$
\begin{aligned}
& \left(B_{1}\right) \vdash t+{ }_{1} t^{\prime}=t \\
& \left(B_{2}\right) \vdash t+{ }_{\epsilon} t=t \\
& (S C) \vdash t+{ }_{\epsilon} t^{\prime}=t^{\prime}+{ }_{1-\epsilon} t \\
& (S A) \vdash\left(t+{ }_{\epsilon} t^{\prime}\right)+_{\epsilon^{\prime}} t^{\prime \prime}=t+\epsilon \epsilon^{\prime}\left(t^{\prime}+{\frac{\epsilon^{\prime}-\epsilon \epsilon^{\prime}}{1-\epsilon \epsilon^{\prime}}} t^{\prime \prime}\right)
\end{aligned}
$$

Universal properties

- Let $\mathbb{K}(\Omega, S)$ be the collection of algebras satisfying the equations in $S . \mathbb{K}(\Omega, S)$ becomes a category if we take the morphisms to be Ω-homomorphisms.

Universal properties

- Let $\mathbb{K}(\Omega, S)$ be the collection of algebras satisfying the equations in $S . \mathbb{K}(\Omega, S)$ becomes a category if we take the morphisms to be Ω-homomorphisms.
- Let X be a set of generators. We write $T[X]$ for $T X / \sim_{S}$. There is a map $\eta_{X}: X \rightarrow T[X]$ given by $\eta_{X}(x)=[x]$.

Universal properties

- Let $\mathbb{K}(\Omega, S)$ be the collection of algebras satisfying the equations in $S . \mathbb{K}(\Omega, S)$ becomes a category if we take the morphisms to be Ω-homomorphisms.
- Let X be a set of generators. We write $T[X]$ for $T X / \sim_{S}$. There is a map $\eta_{X}: X \rightarrow T[X]$ given by $\eta_{X}(x)=[x]$.
- Universal property.

Variety theorem

Birkhoff

A collection of algebras is a variety of algebras if and only if it is closed under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses: quasivariety theorems.

Variety theorem

Birkhoff

A collection of algebras is a variety of algebras if and only if it is closed under homomorphic images, subalgebras and products.

There are analogoues results for algebras defined by Horn clauses: quasivariety theorems.

Example

Consider $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. It's not a field because, e.g. $(1,0) \times(0,1)=(0,0)$. Hence fields cannot be described by equations!

Quantitative equations

- Signature Ω, variables X we get terms $\mathbb{T} X$.

Quantitative equations

- Signature Ω, variables X we get terms $\mathbb{T} X$.
- Quantitative equations: $\mathcal{V}(\mathbb{T} X)$:

$$
s={ }_{\varepsilon} t, \quad s, t \in \mathbb{T} X, \quad \varepsilon \in \mathbb{Q} \cap[0,1]
$$

Quantitative equations

- Signature Ω, variables X we get terms $\mathbb{T} X$.
- Quantitative equations: $\mathcal{V}(\mathbb{T} X)$:

$$
s={ }_{\varepsilon} t, \quad s, t \in \mathbb{T} X, \quad \varepsilon \in \mathbb{Q} \cap[0,1]
$$

- A substitution σ is a map $X \rightarrow \mathbb{T} X$; we write $\Sigma(X)$ for the set of substitutions.

Quantitative equations

- Signature Ω, variables X we get terms $\mathbb{T} X$.
- Quantitative equations: $\mathcal{V}(\mathbb{T} X)$:

$$
s={ }_{\varepsilon} t, \quad s, t \in \mathbb{T} X, \quad \varepsilon \in \mathbb{Q} \cap[0,1]
$$

- A substitution σ is a map $X \rightarrow \mathbb{T} X$; we write $\Sigma(X)$ for the set of substitutions.
- Any σ extends to a map $\mathbb{T} X \rightarrow \mathbb{T} X$.

Quantitative equations

- Signature Ω, variables X we get terms $\mathbb{T} X$.
- Quantitative equations: $\mathcal{V}(\mathbb{T} X)$:

$$
s={ }_{\varepsilon} t, \quad s, t \in \mathbb{T} X, \quad \varepsilon \in \mathbb{Q} \cap[0,1]
$$

- A substitution σ is a map $X \rightarrow \mathbb{T} X$; we write $\Sigma(X)$ for the set of substitutions.
- Any σ extends to a map $\mathbb{T} X \rightarrow \mathbb{T} X$.
- Quantitative inferences: $\mathcal{E}(\mathbb{T} X)=\mathcal{P}_{\text {fin }}(\mathcal{V}(\mathbb{T} X)) \times \mathcal{V}(\mathbb{T} X)$

$$
\left\{s_{1}=\varepsilon_{\varepsilon_{1}} t_{1}, \ldots, s_{n}=\varepsilon_{n} t_{n}\right\} \vdash s={ }_{\varepsilon} t
$$

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.
(Cont) For all $\varepsilon \geq 0,\left\{t={ }_{\varepsilon^{\prime}} s \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash t={ }_{\varepsilon} s$. Infinitary!

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.
(Cont) For all $\varepsilon \geq 0,\left\{t={ }_{\varepsilon^{\prime}} s \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash t={ }_{\varepsilon} s$. Infinitary!
(NExp) For $f: n \in \Omega$,

$$
\left\{t_{1}={ }_{\varepsilon} s_{1}, \ldots, t_{n}={ }_{\varepsilon} s_{n}\right\} \vdash f\left(t_{1}, . . t_{i}, . . t_{n}\right)=_{\varepsilon} f\left(s_{1}, . . s_{i}, . . s_{n}\right)
$$

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.
(Cont) For all $\varepsilon \geq 0,\left\{t={ }_{\varepsilon^{\prime}} s \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash t={ }_{\varepsilon} s$. Infinitary!
(NExp) For $f: n \in \Omega$,

$$
\left\{t_{1}={ }_{\varepsilon} s_{1}, \ldots, t_{n}={ }_{\varepsilon} s_{n}\right\} \vdash f\left(t_{1}, . . t_{i}, . . t_{n}\right)=_{\varepsilon} f\left(s_{1}, . . s_{i}, . . s_{n}\right)
$$

(Subst) If $\sigma \in \Sigma(X), \Gamma \vdash t={ }_{\varepsilon} s$ implies $\sigma(\Gamma) \vdash \sigma(t)={ }_{\varepsilon} \sigma(s)$.

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.
(Cont) For all $\varepsilon \geq 0,\left\{t={ }_{\varepsilon^{\prime}} s \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash t={ }_{\varepsilon} s$. Infinitary!
(NExp) For $f: n \in \Omega$,

$$
\left\{t_{1}={ }_{\varepsilon} s_{1}, \ldots, t_{n}={ }_{\varepsilon} s_{n}\right\} \vdash f\left(t_{1}, . . t_{i}, . . t_{n}\right)=_{\varepsilon} f\left(s_{1}, . . s_{i}, . . s_{n}\right)
$$

(Subst) If $\sigma \in \Sigma(X), \Gamma \vdash t={ }_{\varepsilon} s$ implies $\sigma(\Gamma) \vdash \sigma(t)={ }_{\varepsilon} \sigma(s)$.
(Cut) If $\Gamma \vdash \phi$ for all $\phi \in \Gamma^{\prime}$ and $\Gamma^{\prime} \vdash \psi$, then $\Gamma \vdash \psi$.

Deducibility relations

(Refl) $\emptyset \vdash t={ }_{0} t$
(Symm) $\left\{t={ }_{\varepsilon} s\right\} \vdash s={ }_{\varepsilon} t$.
(Triang) $\left\{t={ }_{\varepsilon} s, s={ }_{\varepsilon^{\prime}} u\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} u$.
(Max) For $e^{\prime}>0,\left\{t={ }_{\varepsilon} s\right\} \vdash t={ }_{\varepsilon+\varepsilon^{\prime}} s$.
(Cont) For all $\varepsilon \geq 0,\left\{t={ }_{\varepsilon^{\prime}} s \mid \varepsilon^{\prime}>\varepsilon\right\} \vdash t={ }_{\varepsilon} s$. Infinitary!
(NExp) For $f: n \in \Omega$,

$$
\left\{t_{1}={ }_{\varepsilon} s_{1}, \ldots, t_{n}={ }_{\varepsilon} s_{n}\right\} \vdash f\left(t_{1}, . . t_{i}, . . t_{n}\right)=_{\varepsilon} f\left(s_{1}, . . s_{i}, . . s_{n}\right)
$$

(Subst) If $\sigma \in \Sigma(X), \Gamma \vdash t={ }_{\varepsilon} s$ implies $\sigma(\Gamma) \vdash \sigma(t)={ }_{\varepsilon} \sigma(s)$.
(Cut) If $\Gamma \vdash \phi$ for all $\phi \in \Gamma^{\prime}$ and $\Gamma^{\prime} \vdash \psi$, then $\Gamma \vdash \psi$.
(Assumpt) If $\phi \in \Gamma$, then $\Gamma \vdash \phi$.

Quantitative equational theories

- Given $S \subset \mathcal{E}(\mathbb{T} X), \vdash_{s}$: smallest deducibility relation containing S.

Quantitative equational theories

- Given $S \subset \mathcal{E}(\mathbb{T} X), \vdash_{s}$: smallest deducibility relation containing S.
- Equational theory: $\mathcal{U}=\vdash_{S} \bigcap \mathcal{E}(\mathbb{T} X)$.

Quantitative algebras

- Ω : signature; $\mathcal{A}=(A, d)$,
A an Ω-algebra and (A, d) a metric space.

Quantitative algebras

- Ω : signature; $\mathcal{A}=(A, d)$,
A an Ω-algebra and (A, d) a metric space.
- All functions in Ω are nonexpansive.

Quantitative algebras

- Ω : signature; $\mathcal{A}=(A, d)$,
A an Ω-algebra and (A, d) a metric space.
- All functions in Ω are nonexpansive.
- Morphisms are Ω-algebra homomorphisms that are nonexpansive.

Quantitative algebras

- Ω : signature; $\mathcal{A}=(A, d)$,
A an Ω-algebra and (A, d) a metric space.
- All functions in Ω are nonexpansive.
- Morphisms are Ω-algebra homomorphisms that are nonexpansive.
- $\mathbb{T} X$ is an Ω-algebra. $\sigma: \mathbb{T} X \rightarrow A, \Omega$-homomorphism.

Quantitative algebras II

- (A, d) satisfies $\left\{s_{i}={ }_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \vdash s={ }_{\varepsilon} t$ if

Quantitative algebras II

- (A, d) satisfies $\left\{s_{i}={ }_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \vdash s={ }_{\varepsilon} t$ if

$$
\begin{gathered}
\forall \sigma, d\left(\sigma\left(s_{i}\right), \sigma\left(t_{i}\right)\right) \leq \varepsilon_{i}, i=1, \ldots, n \\
\text { implies } \\
d(\sigma(s), \sigma(t)) \leq \varepsilon
\end{gathered}
$$

Quantitative algebras II

- (A, d) satisfies $\left\{s_{i}={ }_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \vdash s={ }_{\varepsilon} t$ if

$$
\begin{gathered}
\forall \sigma, d\left(\sigma\left(s_{i}\right), \sigma\left(t_{i}\right)\right) \leq \varepsilon_{i}, i=1, \ldots, n \\
\text { implies } \\
d(\sigma(s), \sigma(t)) \leq \varepsilon .
\end{gathered}
$$

- We write $\left\{s_{i}=\varepsilon_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \neq \mathcal{A} s={ }_{\varepsilon} t$.

Quantitative algebras II

- (A, d) satisfies $\left\{s_{i}={ }_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \vdash s={ }_{\varepsilon} t$ if

$$
\begin{gathered}
\forall \sigma, d\left(\sigma\left(s_{i}\right), \sigma\left(t_{i}\right)\right) \leq \varepsilon_{i}, i=1, \ldots, n \\
\text { implies } \\
d(\sigma(s), \sigma(t)) \leq \varepsilon .
\end{gathered}
$$

- We write $\left\{s_{i}=\varepsilon_{\varepsilon_{i}} t_{i} / i=1, \ldots, n\right\} \neq \mathcal{A} s={ }_{\varepsilon} t$.
- We write $\mathbb{K}(\mathcal{U}, \Omega)$ for the algebras satisfying \mathcal{U}.

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s=_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!
- The (pseudo)metric can take on infinite values.

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!
- The (pseudo)metric can take on infinite values.
- The kernel is a congruence for Ω.

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s=_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!
- The (pseudo)metric can take on infinite values.
- The kernel is a congruence for Ω.
- If we take the quotient we get an (extended) metric space.

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!
- The (pseudo)metric can take on infinite values.
- The kernel is a congruence for Ω.
- If we take the quotient we get an (extended) metric space.
- The resulting algebra is in $\mathbb{K}(\Omega, \mathcal{U})$.

A metric on $\mathbb{T} X$

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \emptyset \vdash s={ }_{\varepsilon} t \in \mathcal{U}\right\}
$$

- Why not use the following?

$$
d^{\mathcal{U}}(s, t)=\inf \left\{\varepsilon \mid \forall V \in \mathcal{P}_{f}(\mathcal{V}(X)), V \vdash s=_{\varepsilon} t \in \mathcal{U}\right\}
$$

- They are the same!
- The (pseudo)metric can take on infinite values.
- The kernel is a congruence for Ω.
- If we take the quotient we get an (extended) metric space.
- The resulting algebra is in $\mathbb{K}(\Omega, \mathcal{U})$.
- We can do this for any set M of generators and produce a "free" quantitative algebra.

Completeness

$\forall \mathcal{A} \in \mathbb{K}(\mathcal{U}, \Omega), \Gamma \neq_{\mathcal{A}} \phi$ if and only if $[\Gamma \vdash \phi] \in \mathcal{U}$.

Completeness

$$
\forall \mathcal{A} \in \mathbb{K}(\mathcal{U}, \Omega), \Gamma \not \models_{\mathcal{A}} \phi \text { if and only if }[\Gamma \vdash \phi] \in \mathcal{U} .
$$

- Analogue of the usual completeness theorem for equational logic.

Completeness

$$
\forall \mathcal{A} \in \mathbb{K}(\mathcal{U}, \Omega), \Gamma \models_{\mathcal{A}} \phi \text { if and only if }[\Gamma \vdash \phi] \in \mathcal{U} .
$$

- Analogue of the usual completeness theorem for equational logic.
- Right to left is by definition.

Completeness

$$
\forall \mathcal{A} \in \mathbb{K}(\mathcal{U}, \Omega), \Gamma \not \models_{\mathcal{A}} \phi \text { if and only if }[\Gamma \vdash \phi] \in \mathcal{U} .
$$

- Analogue of the usual completeness theorem for equational logic.
- Right to left is by definition.
- Left to right is by a model construction.

Completeness

$$
\forall \mathcal{A} \in \mathbb{K}(\mathcal{U}, \Omega), \Gamma \neq_{\mathcal{A}} \phi \text { if and only if }[\Gamma \vdash \phi] \in \mathcal{U} \text {. }
$$

- Analogue of the usual completeness theorem for equational logic.
- Right to left is by definition.
- Left to right is by a model construction.
- The proof needs to deal with quantitative aspects and uses the infinitary axiom.

Free construction from a metric space

- Starting from a metric space (M, d) we can define $\mathbb{T} M$ by adding constants for each $m \in M$

Free construction from a metric space

- Starting from a metric space (M, d) we can define $\mathbb{T} M$ by adding constants for each $m \in M$
- and axioms $\emptyset \vdash m={ }_{e} n$ for every rational e such that $d(m, n) \leq e$.

Free construction from a metric space

- Starting from a metric space (M, d) we can define $\mathbb{T} M$ by adding constants for each $m \in M$
- and axioms $\emptyset \vdash m={ }_{e} n$ for every rational e such that $d(m, n) \leq e$.
- Call this extended signature Ω_{M} and the extended theory \mathcal{U}_{M}.

Free construction from a metric space

- Starting from a metric space (M, d) we can define $\mathbb{T} M$ by adding constants for each $m \in M$
- and axioms $\emptyset \vdash m={ }_{e} n$ for every rational e such that $d(m, n) \leq e$.
- Call this extended signature Ω_{M} and the extended theory \mathcal{U}_{M}.
- Any algebra in $\mathbb{K}\left(\mathcal{U}_{M}, \mathcal{U}_{M}\right)$ can be viewed as an algebra in $\mathbb{K}(\Omega, \mathcal{U})$ by forgetting about the interpretation of the constants from M.

Free construction from a metric space

- Starting from a metric space (M, d) we can define $\mathbb{T} M$ by adding constants for each $m \in M$
- and axioms $\emptyset \vdash m={ }_{e} n$ for every rational e such that $d(m, n) \leq e$.
- Call this extended signature Ω_{M} and the extended theory \mathcal{U}_{M}.
- Any algebra in $\mathbb{K}\left(\mathcal{U}_{M}, \mathcal{U}_{M}\right)$ can be viewed as an algebra in $\mathbb{K}(\Omega, \mathcal{U})$ by forgetting about the interpretation of the constants from M.
- Given any $\alpha: M \rightarrow A$ non-expansive we can turn $\mathcal{A}=(A, d)$ into an algebra in $\mathbb{K}\left(\Omega_{M}, \mathcal{U}_{M}\right)$ by interpreting each $m \in M$ as $\alpha(m) \in A$.

Universal property

\mathcal{U}_{M} is consistent if and only if the map η_{M} is an isometry.

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+1-e x$

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA) $\left(x+_{e_{1}} y\right)+e_{2} z=0 x+e_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA) $\left(x+_{e_{1}} y\right)+e_{2} z=0 x+e_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$
- (LI) $x+_{e} z={ }_{\varepsilon} y+e z$ where $e \leq \varepsilon \in \mathbb{Q} \cap[0,1]$

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA $)\left(x+_{e_{1}} y\right)+_{e_{2}} z=0 x+_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$
- (LI) $x+_{e} z=\varepsilon y+e z$ where $e \leq \varepsilon \in \mathbb{Q} \cap[0,1]$
- The last equation uses one of the new indexed equations in a nontrivial way.

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA $)\left(x+_{e_{1}} y\right)+_{e_{2}} z=0 x+_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$
- (LI) $x+_{e} z=\varepsilon y+e z$ where $e \leq \varepsilon \in \mathbb{Q} \cap[0,1]$
- The last equation uses one of the new indexed equations in a nontrivial way.
- We call it the left-invariant axiom scheme; LIB algebras for short.

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+{ }_{e} x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA $)\left(x+_{e_{1}} y\right)+_{e_{2}} z=0 x+_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$
- (LI) $x+_{e} z=\varepsilon y+e z$ where $e \leq \varepsilon \in \mathbb{Q} \cap[0,1]$
- The last equation uses one of the new indexed equations in a nontrivial way.
- We call it the left-invariant axiom scheme; LIB algebras for short.
- What does this axiomatize?

Barycentric algebras again

- $\Omega=\left\{+_{e}: 2 \mid e \in[0,1]\right\}$; uncountably many operations!
- (B1) $\emptyset \vdash x+{ }_{1} y={ }_{0} x$
- (B2) $\emptyset \vdash x+e x={ }_{0} x$
- (SC) $\emptyset \vdash x+e y=0 y+{ }_{1-e} x$
- (SA $)\left(x+_{e_{1}} y\right)+_{e_{2}} z=0 x+_{e_{1} e_{2}}\left(y+\frac{e_{2}-e_{1} e_{2}}{1-e_{1} e_{2}} z\right)$ where $e_{1}, e_{2} \in(0,1)$
- (LI) $x+_{e} z==_{\varepsilon} y+e z$ where $e \leq \varepsilon \in \mathbb{Q} \cap[0,1]$
- The last equation uses one of the new indexed equations in a nontrivial way.
- We call it the left-invariant axiom scheme; LIB algebras for short.
- What does this axiomatize?
- The total variation metric on probability distributions.

Total variation metric

$$
T V(p, q)=\sup _{E \in \Sigma}|p(E)-q(E)| .
$$

Total variation metric

$$
T V(p, q)=\sup _{E \in \Sigma}|p(E)-q(E)|
$$

- It measures the size of the set on which p, q disagree the most.

Total variation metric

$$
T V(p, q)=\sup _{E \in \Sigma}|p(E)-q(E)|
$$

- It measures the size of the set on which p, q disagree the most.
- There is a duality theorem that gives it as a minimum rather than a maximum.

Couplings

- Let $\mathcal{B}(M, \Sigma)$ be the Borel measures on a metric space M with Borel algera Σ.

Couplings

- Let $\mathcal{B}(M, \Sigma)$ be the Borel measures on a metric space M with Borel algera Σ.
- We have a product space $M \times M$ with product σ-algebra $\Sigma \otimes \Sigma$ and Borel measures $\mathcal{B}(M \times M, \Sigma \otimes \Sigma)$.

Couplings

- Let $\mathcal{B}(M, \Sigma)$ be the Borel measures on a metric space M with Borel algera Σ.
- We have a product space $M \times M$ with product σ-algebra $\Sigma \otimes \Sigma$ and Borel measures $\mathcal{B}(M \times M, \Sigma \otimes \Sigma)$.
- Given probability measures p, q a coupling is a probability measure ω on $(M \times M, \Sigma \otimes \Sigma)$ such that for all $E \in \Sigma$:

$$
\omega(E \times M)=p(E) \quad \text { and } \quad \omega(M \times E)=q(E)
$$

Couplings

- Let $\mathcal{B}(M, \Sigma)$ be the Borel measures on a metric space M with Borel algera Σ.
- We have a product space $M \times M$ with product σ-algebra $\Sigma \otimes \Sigma$ and Borel measures $\mathcal{B}(M \times M, \Sigma \otimes \Sigma)$.
- Given probability measures p, q a coupling is a probability measure ω on $(M \times M, \Sigma \otimes \Sigma)$ such that for all $E \in \Sigma$:

$$
\omega(E \times M)=p(E) \quad \text { and } \quad \omega(M \times E)=q(E)
$$

- $\mathcal{C}(p, q)$ is the set of couplings for (p, q).

Couplings II

- Write Δ for the diagonal in $M \times M$.

Couplings II

- Write Δ for the diagonal in $M \times M$.
- TV duality: $T V(p, q)=\min \left\{\omega\left(\Delta^{c}\right) \mid \omega \in \mathcal{C}(p, q)\right\} ;$ min is attained.

Couplings II

- Write Δ for the diagonal in $M \times M$.
- TV duality: $T V(p, q)=\min \left\{\omega\left(\Delta^{c}\right) \mid \omega \in \mathcal{C}(p, q)\right\}$; min is attained.
- Convex combinations of couplings are couplings.

Couplings II

- Write Δ for the diagonal in $M \times M$.
- TV duality: $T V(p, q)=\min \left\{\omega\left(\Delta^{c}\right) \mid \omega \in \mathcal{C}(p, q)\right\}$; min is attained.
- Convex combinations of couplings are couplings.
- Splitting lemma: If p, q are Borel probability measures on M and $e=T(p, q)$. There are $p^{\prime}, q^{\prime}, r$ such that

$$
p=e p^{\prime}+(1-e) r \text { and } q=e q^{\prime}+(1-e) r .
$$

Freely generated LIB algebra

- We know there is a freely generated LIB algebra from a metric space M. What is it concretely?

Freely generated LIB algebra

- We know there is a freely generated LIB algebra from a metric space M. What is it concretely?
- Let $\Pi[M]$ be the LIB algebra obtained by taking the finitely-supported probability measures on M and interpreting $+_{e}$ as convex combination.

Freely generated LIB algebra

- We know there is a freely generated LIB algebra from a metric space M. What is it concretely?
- Let $\Pi[M]$ be the LIB algebra obtained by taking the finitely-supported probability measures on M and interpreting $+_{e}$ as convex combination.
- We endow it with the total-variation metric to make it a quantitative algebra.

Freely generated LIB algebra II

- Theorem: $\Pi[M] \in \mathbb{K}\left(\mathcal{B}, \mathcal{U}^{L I}\right)$.

Freely generated LIB algebra II

- Theorem: $\Pi[M] \in \mathbb{K}\left(\mathcal{B}, \mathcal{U}^{L I}\right)$.
- Use convexity and splitting lemma to show LI and Nexp.

Freely generated LIB algebra II

- Theorem: $\Pi[M] \in \mathbb{K}\left(\mathcal{B}, \mathcal{U}^{L I}\right)$.
- Use convexity and splitting lemma to show LI and Nexp.
- Theorem: $\Pi[M]$ is the free algebra generated by M.

Freely generated LIB algebra II

- Theorem: $\Pi[M] \in \mathbb{K}\left(\mathcal{B}, \mathcal{U}^{L I}\right)$.
- Use convexity and splitting lemma to show LI and Nexp.
- Theorem: $\Pi[M]$ is the free algebra generated by M.
- Use the embedding of convex spaces into vector spaces (Stone 49).

Freely generated LIB algebra II

- Theorem: $\Pi[M] \in \mathbb{K}\left(\mathcal{B}, \mathcal{U}^{L I}\right)$.
- Use convexity and splitting lemma to show LI and Nexp.
- Theorem: $\Pi[M]$ is the free algebra generated by M.
- Use the embedding of convex spaces into vector spaces (Stone 49).
- The axioms give rise to the total-variation metric.

Interpolative barycentric algebras

- Same signature as barycentric algebras.

Interpolative barycentric algebras

- Same signature as barycentric algebras.
- Axioms (B1), (B2), (SC), (SA); drop (LI).

Interpolative barycentric algebras

- Same signature as barycentric algebras.
- Axioms (B1), (B2), (SC), (SA); drop (LI).
- $\left(\mathbf{I B}_{p}\right)$

$$
\left\{x=\varepsilon_{1} y, x^{\prime}=\varepsilon_{\varepsilon_{2}} y^{\prime}\right\} \vdash x+{ }_{e} x^{\prime}=\delta y+{ }_{e} y^{\prime}
$$

where $\left(e \varepsilon_{1}^{p}+(1-e) \varepsilon_{2}^{p}\right)^{1 / p} \leq \delta$.

Interpolative barycentric algebras

- Same signature as barycentric algebras.
- Axioms (B1), (B2), (SC), (SA); drop (LI).
- $\left(\mathbf{I B}_{p}\right)$

$$
\left\{x=\varepsilon_{\varepsilon_{1}} y, x^{\prime}=\varepsilon_{\varepsilon_{2}} y^{\prime}\right\} \vdash x+{ }_{e} x^{\prime}={ }_{\delta} y+{ }_{e} y^{\prime}
$$

where $\left(e \varepsilon_{1}^{p}+(1-e) \varepsilon_{2}^{p}\right)^{1 / p} \leq \delta$.

- Now we need assumptions in the equation.

Interpolative barycentric algebras

- Same signature as barycentric algebras.
- Axioms (B1), (B2), (SC), (SA); drop (LI).
- $\left(\mathbf{I B}_{p}\right)$

$$
\left\{x=\varepsilon_{\varepsilon_{1}} y, x^{\prime}=\varepsilon_{\varepsilon_{2}} y^{\prime}\right\} \vdash x+{ }_{e} x^{\prime}=\delta y+{ }_{e} y^{\prime}
$$

where $\left(e \varepsilon_{1}^{p}+(1-e) \varepsilon_{2}^{p}\right)^{1 / p} \leq \delta$.

- Now we need assumptions in the equation.
- If $p=1$ we get

$$
\left\{x=\varepsilon_{\varepsilon_{1}} y, x^{\prime}=\varepsilon_{\varepsilon_{2}} y^{\prime}\right\} \vdash x+e_{e} x^{\prime}={ }_{\delta} y+_{e} y^{\prime}
$$

where $e \varepsilon_{1}+(1-e) \varepsilon_{2} \leq \delta$.

Picture of $I B_{1}$

Kantorovich (Wasserstein) metric

Let (M, d) be a complete separable metric space and $p \geq 1$.

W_{p} metric

$$
W_{d}^{p}(\mu, \nu)=\inf \left\{\left[\int_{M \times M} d^{p}(x, y) \mathrm{d} \omega\right]^{1 / p} \mid \omega \in \mathcal{C}(\mu, \nu)\right\}
$$

Kantorovich (Wasserstein) metric

Let (M, d) be a complete separable metric space and $p \geq 1$.

W_{p} metric

$$
W_{d}^{p}(\mu, \nu)=\inf \left\{\left[\int_{M \times M} d^{p}(x, y) \mathrm{d} \omega\right]^{1 / p} \mid \omega \in \mathcal{C}(\mu, \nu)\right\}
$$

Kantorovich

$$
K_{d}(\mu, \nu)=\sup \left\{\left|\int f \mathrm{~d} \mu-\int f \mathrm{~d} \nu\right|\right\}
$$

Kantorovich (Wasserstein) metric

Let (M, d) be a complete separable metric space and $p \geq 1$.

W_{p} metric

$$
W_{d}^{p}(\mu, \nu)=\inf \left\{\left[\int_{M \times M} d^{p}(x, y) \mathrm{d} \omega\right]^{1 / p} \mid \omega \in \mathcal{C}(\mu, \nu)\right\}
$$

Kantorovich

$$
K_{d}(\mu, \nu)=\sup \left\{\left|\int f \mathrm{~d} \mu-\int f \mathrm{~d} \nu\right|\right\}
$$

Duality

$$
K_{d}(\mu, \nu)=\min \left\{\left[\int_{M \times M} d(x, y) \mathrm{d} \omega\right] \mid \omega \in \mathcal{C}(\mu, \nu)\right\}
$$

Finitary case

- We take the finitely supported measures on M and interpret it as a barycentric algebra as before.

Finitary case

- We take the finitely supported measures on M and interpret it as a barycentric algebra as before.
- We give it the Kantorovich metric and show that we get an IB algebra.

Finitary case

- We take the finitely supported measures on M and interpret it as a barycentric algebra as before.
- We give it the Kantorovich metric and show that we get an IB algebra.
- This uses the definition of the W_{d}^{p} metrics as an inf and convexity of couplings.

Finitary case

- We take the finitely supported measures on M and interpret it as a barycentric algebra as before.
- We give it the Kantorovich metric and show that we get an IB algebra.
- This uses the definition of the W_{d}^{p} metrics as an inf and convexity of couplings.
- We prove a splitting lemma for this case and show that we get the free algebra by similar, but more involved arguments.

Finitary case

- We take the finitely supported measures on M and interpret it as a barycentric algebra as before.
- We give it the Kantorovich metric and show that we get an IB algebra.
- This uses the definition of the W_{d}^{p} metrics as an inf and convexity of couplings.
- We prove a splitting lemma for this case and show that we get the free algebra by similar, but more involved arguments.
- How do we lift it to the continuous case?

Weak convergence

- Suppose we have a sequence of measures $\left\{\mu_{i} \mid i \in I\right\}$. What does it mean to converge?

Weak convergence

- Suppose we have a sequence of measures $\left\{\mu_{i} \mid i \in I\right\}$. What does it mean to converge?
- For a "suitable" class of functions:

$$
\int f \mathrm{~d} \mu_{i} \rightarrow \int f \mathrm{~d} \mu
$$

Weak convergence

- Suppose we have a sequence of measures $\left\{\mu_{i} \mid i \in I\right\}$. What does it mean to converge?
- For a "suitable" class of functions:

$$
\int f \mathrm{~d} \mu_{i} \rightarrow \int f \mathrm{~d} \mu
$$

- For Kantorovich use contractive functions; for W_{p} use a class of functions whose growth is controlled by d and p.

Weak convergence

- Suppose we have a sequence of measures $\left\{\mu_{i} \mid i \in I\right\}$. What does it mean to converge?
- For a "suitable" class of functions:

$$
\int f \mathrm{~d} \mu_{i} \rightarrow \int f \mathrm{~d} \mu
$$

- For Kantorovich use contractive functions; for W_{p} use a class of functions whose growth is controlled by d and p.
- The Kantorovich metrics give the topology of weak convergence.

Weak convergence

- Suppose we have a sequence of measures $\left\{\mu_{i} \mid i \in I\right\}$. What does it mean to converge?
- For a "suitable" class of functions:

$$
\int f \mathrm{~d} \mu_{i} \rightarrow \int f \mathrm{~d} \mu
$$

- For Kantorovich use contractive functions; for W_{p} use a class of functions whose growth is controlled by d and p.
- The Kantorovich metrics give the topology of weak convergence.
- The finitely supported probability measures are dense in the space of all probability measures.

Complete separable metric spaces

- A separable metric space has a countable dense subset.

Complete separable metric spaces

- A separable metric space has a countable dense subset.
- Define $\Delta[M]$ to be the space of all Borel probability measures on a complete separable metric space. We give it the W_{d}^{p} metric and interpret $+_{e}$ as convex combination.

Complete separable metric spaces

- A separable metric space has a countable dense subset.
- Define $\Delta[M]$ to be the space of all Borel probability measures on a complete separable metric space. We give it the W_{d}^{p} metric and interpret $+_{e}$ as convex combination.
- This gives an IB algebra.

Complete separable metric spaces

- A separable metric space has a countable dense subset.
- Define $\Delta[M]$ to be the space of all Borel probability measures on a complete separable metric space. We give it the W_{d}^{p} metric and interpret $+_{e}$ as convex combination.
- This gives an IB algebra.
- If we construct the term algebra $\mathbb{T}[M]$ as before and complete it we get an algebra isomorphic to $\Delta[M]$.

Complete separable metric spaces

- A separable metric space has a countable dense subset.
- Define $\Delta[M]$ to be the space of all Borel probability measures on a complete separable metric space. We give it the W_{d}^{p} metric and interpret $+_{e}$ as convex combination.
- This gives an IB algebra.
- If we construct the term algebra $\mathbb{T}[M]$ as before and complete it we get an algebra isomorphic to $\Delta[M]$.
- In this case we get a monad on CSMet $_{1}$: complete separable 1-bounded metric spaces.

Conclusions

- Quantitative equations give a handle on otherwise arcane things like the Kantorovich metrics.

Conclusions

- Quantitative equations give a handle on otherwise arcane things like the Kantorovich metrics.
- Other examples: Hausdorff metric, pointed barycentric algebras.

Conclusions

- Quantitative equations give a handle on otherwise arcane things like the Kantorovich metrics.
- Other examples: Hausdorff metric, pointed barycentric algebras.
- Recent work: Variety theorems (LICS 2017), Markov processes by combining theories (LICS 2018), Fixed-point operators (2020), Tensor of theories (2020)

