Automatic Differentiation in PyTorch

Breandan Considine

February 5, 2021
What is automatic differentiation?

- AD is a higher-order function which either:
 - Accepts a function and returns a second function which gives, when evaluated, the sensitivity at any location, \(AD : (f) \mapsto f' \)
 - Accepts a function and an input to be evaluated, and evaluates the function and its derivative, at that specific location \(AD : (f, x) \mapsto (f(x), f'(x)) \)
- These two views correspond to static and dynamic AD
 - For mathematical expressions, the static approach is preferred
 - For computer programs, the dynamic approach is preferred
Static and Dynamic Representations

Programs are dynamical systems, graphs are static objects.

Program

```python
sum = 0
l = [0, 0, 0, 0]
for i in range(0, 4):
    l[i] += t[i] * x[i]
for i in range(0, 4):
    l[i] -= y[i] - b
for i in range(0, 4):
    l[i] *= l[i]
for i in range(0, 4):
    sum += l[i]
l = sqrt(sum)
```

Computation Graph

```
0.5
```

```
+   +   +   +
|    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```

```
+   +   +   +   +
|    |    |    |    |
```
Dimensions of AD frameworks
What is a differentiable program?
What is a derivative?

To understand AD, you just need to remember two simple rules:

\[
D(f + g) = D(f) + D(g)
\]
\[
D(f \cdot g) = D(f) \cdot g + f \cdot D(g)
\]

The derivative is a \textit{linear map} between function spaces.

\[
D(f + g) = D(f) + D(g)
\]
\[
\alpha D(f) = D(\alpha f)
\]
Picrograd / PyTorch in a single slide

class Var:
 def __init__(self, val, grad_fn=lambda: []):
 self.v, self.grad_fn = val, grad_fn

 def __add__(self, other):
 return Var(self.v + other.v,
 lambda: [(self, 1.0), (other, 1.0)])

 def __mul__(self, other):
 return Var(self.v * other.v,
 lambda: [(self, other.v), (other, self.v)])

 def grad(self, bp = 1.0, dict = {}):
 dict[self] = dict.get(self, 0) + bp
 for input, val in self.grad_fn():
 input.grad(val * bp, dict)
 return dict
Higher-order and higher-rank AD

The gradient, $\nabla : (\mathbb{R}^m \to \mathbb{R}) \to \mathbb{R}^m$ maps a function Q to:

$$\nabla Q(q_1, \ldots, q_m) = \left[\frac{\partial Q}{\partial q_1}, \ldots, \frac{\partial Q}{\partial q_m} \right]$$

The Jacobian, $J : (\mathbb{R}^m \to \mathbb{R}^n) \to \mathbb{R}^{n \times m}$ is a matrix of partials:

$$J \circ f = \left[\frac{\partial f}{\partial x_1} \ldots \frac{\partial f}{\partial x_m} \right] = \left[\begin{array}{ccc} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{array} \right] = \begin{bmatrix} \nabla f_1 \\ \vdots \\ \nabla f_m \end{bmatrix}$$
Higher-order chains

Suppose we have a function $P(X) = p_k \circ p_{k-1} \circ \cdots \circ p_1 \circ X$. The derivative of a linear composition can be expressed as a product:

$$\frac{dP}{dp_1} = \frac{dp_k}{dp_{k-1}} \frac{dp_{k-1}}{dp_{k-2}} \cdots \frac{dp_2}{dp_1} = \prod_{i=1}^{k-1} \frac{dp_{i+1}}{dp_i}$$

This also holds in higher dimensions, for example $P_k : \mathbb{R}^m \to \mathbb{R}^n$:

$$\mathcal{J}P_k = \prod_{i=1}^{k} \mathcal{J}p_i = \left(\left((\mathcal{J}p_k \mathcal{J}p_{k-1}) \cdots \mathcal{J}p_2 \right) \mathcal{J}p_1 \right)$$

Reverse mode, VJP, Pullback

$$= \left(\mathcal{J}p_k \left(\mathcal{J}p_{k-1} \cdots (\mathcal{J}p_2 \mathcal{J}p_1) \right) \right)$$

Forward mode, JVP, Pushforward
Gradients in PyTorch

Suppose we have a scalar-valued vector function, \(f : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \). \(\text{grad} \) is a function that takes \(f \) and a tuple of input variables, and returns their gradients as a tuple.

\[
x = \text{torch.randn}(2, \text{requires_grad}=\text{True}) \\
t = \text{torch.tensor}([[2., 3.], \text{requires_grad}=\text{True}]) \\
y = \text{torch.randn}(2) \\
f = \text{sum}((x*t - y)**2)**0.5
\]

\[
\text{torch.autograd.grad}(f, \text{inputs}=(x, t))
\]

\[
(\text{tensor}([-0.60, 2.85]), \text{tensor}([0.23, 1.47]))
\]
What is a vectorizing map? (vmap)

Suppose we have a scalar-valued function, \(f : \mathbb{R} \rightarrow \mathbb{R} \). **vmap** is a function which takes \(f \) and returns a function \(g : \mathbb{R}^* \rightarrow \mathbb{R}^* \) that accepts a tensor \(t : \mathbb{R}^* \), and maps \(f \) over the tensor, elementwise.

```python
def function = lambda x: x**2 + x
tensor = torch.ones(3, 3, 3) * 2
vmap(function)(tensor)
```

```python
torch.dot # [ D ],[ D ] -> S
vd = vmap(torch.dot) # [ N,D ],[ N,D ] -> [ N ]
vvd = vmap(vd) # [N,D,C],[N,D,C] -> [N,D]
x, y = torch.ones(3, 2, 5), torch.ones(3, 2, 5)
vvd(x, y)
```
def jacobian(fun, x) -> torch.Tensor:
 x = x.detach().requires_grad_()
 y = fun(x)
 vjp = lambda v: torch.autograd.grad(y, x, v)[0]
 vs = torch.eye(y.numel())
 .view(y.numel(), *y.shape)
 result = vmap(vjp)(vs)
 return result.detach()

f = lambda x: x ** 3
jacobian(f, torch.ones(3))

tensor([[3., 0., 0.],
 [0., 3., 0.],
 [0., 0., 3.]])
Higher-order and higher-rank AD

The Hessian $\mathbf{H} : (\mathbb{R}^m \to \mathbb{R}) \to \mathbb{R}^{m \times m}$ maps scalar functions to ∂^2:

$$
\mathbf{H}(Q) =
\begin{bmatrix}
\frac{\partial^2 Q}{\partial x_1^2} & \frac{\partial^2 Q}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 Q}{\partial x_1 \partial x_m} \\
\frac{\partial^2 Q}{\partial x_2 \partial x_1} & \frac{\partial^2 Q}{\partial x_2^2} & \cdots & \frac{\partial^2 Q}{\partial x_2 \partial x_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 Q}{\partial x_m \partial x_1} & \frac{\partial^2 Q}{\partial x_m \partial x_2} & \cdots & \frac{\partial^2 Q}{\partial x_m \partial x_m}
\end{bmatrix}
$$

The Hessian and Jacobian are related by $\mathbf{H}(Q)^\top = \mathcal{J} \circ \nabla Q$.
def hessian(fun, x) -> torch.Tensor:
 def grad0(x: torch.Tensor):
 y = fun(x)
 assert y.dim() == 0
 return torch.autograd.grad(y, x, create_graph=True)[0]
 return jacobian(grad0, x)

g = lambda x: (x ** 3).sum()

hessian(g, torch.ones(3))

Output

tensor([[6., 0., 0.],
 [0., 6., 0.],
 [0., 0., 6.]])
What is a tensor?

Rank-2

\[
\begin{bmatrix}
1 & 0 & \cdots & 1 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1 \\
\end{bmatrix}
\]

Rank-3

\[\mathcal{G}\]

\[\mathcal{F}\]

\[\mathcal{E}\]
Checking matrix multiplication

Suppose we have two tensors, \(A : \mathbb{R}^{x \times y \times \cdots} \) and \(B : \mathbb{R}^{y \times z \times \cdots} \). Then \(C = A @ B \) has type \(C : \mathbb{R}^{x \times z \times \cdots} \). For example:

```python
state = torch.ones(9, 5, names=('batch', 'D'))
trans = torch.randn(5, 5, names=('in', 'out'))
next_state = state @ trans
print(next_state.names)
```

('batch', 'out')
Runtime type checking: name mismatch

What happens if we try to sum dimensions with different names?

```python
x = torch.ones(3, names=('X',))
y = torch.ones(3, names=('Z',))
z = x + y
```

```
----RuntimeError
Traceback (most recent call last)[...]
  2 x = torch.ones(3, names=('X',))
  3 y = torch.ones(3, names=('Y',))
----> 4 xpz = x + z
RuntimeError: Error attempting to broadcast
dims ['X'] and dims ['Y']: dim 'X' and dim 'Y'
are at the same position from the right
```
Tips for Parallelism: Vectorization

- Stateful computation extremely difficult to parallelize
- Sequentiality is the essence of parallelism
- If necessary to use CPU, use `torch.multiprocessing`
- Use vectorization where possible, e.g. `vmap`, `pmap`
Parallelism Tips: Loading data incrementally

- Loading the entire dataset into memory generally undesirable
- Start by timing. How long does it take to load a batch?
- Need to keep the GPU busy to maximize throughput
- When in doubt, check utilization `nvidia-smi`, `nvtop`

```python
X, Y = torch.load('training.pt')  # ✗

---
ts = Dataset(partition['train'], labels)
tg = torch.utils.data.DataLoader(ts, ...)  # ✓
```
References

- `torch.vmap` documentation
- Named Tensor Notation
- Introduction to Named Tensors in PyTorch
- PyTorch Data Loading Tutorial
- Model parallel best practices