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To compute weight of assignment: multiply factors together



Computing Probabilities

To convert weight to probability: divide by normalizing constant Z



Computing Probabilities

assignments to
Vo,V1,.-, Ve

To compute normalizing constant: sum over the weights of all
assignments



Factor graphs are powerful...

...but they are limited by their fixed structure.
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Limitations

Can't represent many models from NLP.

Want a probability model over all possible sentences:
The dog was eating spaghetti.

| hate getting a flat tire.

Nobody wears orange pajamas while playing the accordion.

These sentences have unbounded length.
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Can't represent PCFGs:
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Solution

Use hyperedge replacement grammars
(Bauderon and Courcelle, 1987; Habel and Kreowski, 1987)

to generate sets of factor graphs



Hyperedge Replacement Grammars




Review: Context-Free (String) Grammars

S—TC
T — aTb
T—e¢
C—cC

C—e¢

generates the language
{a"b"c™|n,m > 0}

S

TC

aTbC
aaTbbC
aaaTbbbC
aaabbbC
aaabbbcC
aaabbbccC

aaabbbcc
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Factor Graph Grammars

A factor graph grammar
is a hyperedge replacement grammar

that generates factor graphs

12



A Factor Graph Grammar for HMMs

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for HMMs

D@—

G- =@

13



A Factor Graph Grammar for HMMs

IG

G- =@

13



A Factor Graph Grammar for HMMs

D@—

13



A Factor Graph Grammar for HMMs

=@ &

om-®-@u ~OH
,,, V |

é

13



A Factor Graph Grammar for HMMs

—
"' . |

"
@ @g
@H - =@

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for HMMs

=@ ="
W)

13



A Factor Graph Grammar for HMMs

=@ ="
W)

13



A Factor Graph Grammar for HMMs

(T 8T o @ =
@)

@Ol - @@

13



A Factor Graph Grammar for HMMs

G- =@

13



A Factor Graph Grammar for PCFGs

14



A Factor Graph Grammar for PCFGs




A Factor Graph Grammar for PCFGs

=
5 ®




A Factor Graph Grammar for PCFGs

=
5-®




A Factor Graph Grammar for PCFGs

H\Ni

-4

|




A Factor Graph Grammar for PCFGs
P

"
:

|




A Factor Graph Grammar for PCFGs

E-® ®




(=

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



N
DJ/W\, \m

&=@

,\ 1/ /

- @m d-

" om

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<




&=@

@ =
e

/N\TD/ANUE
T

@a

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



A Factor Graph Grammar for PCFGs




2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<



2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

14



A Factor Graph Grammar for PCFGs

14



More FGG Ideas

What else can you use FGGs for?

e Linear chains of nodes

Anything tree-shaped (phylogeny trees, abstract syntax trees)
e More grammatical formalisms (TAG, LCFRS)
Various types of DAGs (AMRs, control flow graphs, git

commit histories?)

RNA secondary structures

15



Sum-Product in a Factor Graph

16



Sum-Product in a Factor Graph

16



Sum-Product in a Factor Graph

16



Sum-Product in a Factor Graph

16



Sum-Product in a Factor Graph

assignments to
Vo,Vi,..., Ve

To compute sum-product of factor graph: sum over the weights of

all assignments
16
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Sum-Product in a Factor Graph Grammar
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To convert weight to probability: divide by sum-product Z
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Sum-Product in a Factor Graph Grammar
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Sum-Product in a Factor Graph Grammar

Z = Z(ov@ @)+t

(o)

To compute sum-product of factor graph grammar: sum over the
sum-products of all derivations



Inference




Inference

3 cases:

¢ Infinite graph language, finite variable domains:
use extension of variable elimination

e Finite graph language, infinite variable domains:
convert to one big factor graph

e Infinite graph language, infinite variable domains:
undecideable

19



Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
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Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes
e One eq. for each right-hand side + assignment to ext. nodes
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Computational Complexity

=2 > =@ @®

tET> w3eWs3

Number of equations: O(|G|m*)

e |G|: number of rules
e m: max size of any variable domain
e k: max # of nodes in RHS

Cases:

e Non-recursive: compute one at a time, O(|G|m*)
e Linear: solve system of linear equations, O(|G|3m3(k+1)

e Otherwise: solve iteratively
21
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How to observe a value for the second-to-last tag?

= ® = O = ® =
w

r ® = O =« ® O =
w o

r ® = © =« ©® = O = @ =
woow

23



How to observe a value for the second-to-last tag?

23



Instead of identifying variables in the derived graph,

identify variables in the grammar
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Conjunction lets you modularize grammar into two halves:

the original grammar and the query grammar
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Lots of previous work generalizing PGMs.
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Related Work

Lots of previous work generalizing PGMs.

Tractable formalisms:

Case Factor

Plated Factor
Graphs

Diagrams

Sum-Product
Dynamic Graphical
Models

Networks
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Related Work

Lots of previous work generalizing PGMs.

Expressive formalisms:

Probabilistic
Programming

Probabilistic
Relational

Models Languages
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Related Work

Lots of previous work generalizing PGMs.

Factor graph grammars:

e General enough to subsume the tractable formalisms

e Simple enough to have tractable inference in many important
cases

26
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Translating Recursive Probabilistic Programs to Factor Graph

Grammars (PROBPROG 2020)

-
o
David Chiang
dchiang®@nd.edu

Chung-chieh Shan

ccshan@indiana.edu

Chiang, David, and Chung-chieh Shan. “Translating Recursive

Probabilistic Programs to Factor Graph Grammars.” arXiv preprint

arXiv:2010.12071 (2020).
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Translating Recursive Probabilistic Programs to Factor Graph
Grammars (PROBPROG 2020)

# sample a tree from a PCFG
fun d(x) =
case sample p[x] of
inl a =>

unit translates to
| inr yz =>

let u = d(fst(yz)) in
d(snd(yz));
d(s)

28



e Implementation

Approximate inference

Better ways to query FGGs

Automatic structure learning for FGG rules

29



Thank youl!
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