Factor Graph Grammars
for Probabilistic Modeling

Darcey Riley
2021-04-22

Mila Computational Calculus Reading Group

Table of Contents

1. Factor graphs and their limitations

Table of Contents

1. Factor graphs and their limitations

2. Hyperedge replacement grammars

Table of Contents

1. Factor graphs and their limitations
2. Hyperedge replacement grammars

3. Factor graph grammars

Table of Contents

1. Factor graphs and their limitations
2. Hyperedge replacement grammars
3. Factor graph grammars

4. Inference: an extension of variable elimination

Table of Contents

1. Factor graphs and their limitations

2. Hyperedge replacement grammars

3. Factor graph grammars

4. Inference: an extension of variable elimination

5. Querying a factor graph grammar

Table of Contents

1. Factor graphs and their limitations

2. Hyperedge replacement grammars

3. Factor graph grammars

4. Inference: an extension of variable elimination
5. Querying a factor graph grammar

6. Related work

Table of Contents

1. Factor graphs and their limitations

2. Hyperedge replacement grammars

3. Factor graph grammars

4. Inference: an extension of variable elimination
5. Querying a factor graph grammar

6. Related work

7. Ongoing and future work

Factor Graph Grammars (NeurlPS 2020)

=
P S
1

David Chiang Darcey Riley
dchiang®@nd.edu darcey.riley@nd.edu
. UNIVERSITY OF e UNIVERSITY OF
NOTRE DAME NOTRE DAME

Chiang, David, and Darcey Riley. “Factor Graph Grammars.” Advances
in Neural Information Processing Systems 33 (2020).

Factor Graphs and Their Limitations

Factor Graphs

Factor Graphs

variables

O
/ .8
WKDQD

factors

Factor Graphs

@éﬁw

factors

Factor Graphs

f(Va, Vs, V
@ D /
@) @/D
factors
(hyperedges)

Factor Graphs

ol
® .o Q

factors
(hyperedges)

Computing Probabilities

Computing Probabilities

)
X m X@\ X

To compute weight of assignment: multiply factors together

Computing Probabilities

To convert weight to probability: divide by normalizing constant Z

Computing Probabilities

assignments to
Vo,V1,.-, Ve

To compute normalizing constant: sum over the weights of all
assignments

Factor graphs are powerful...

...but they are limited by their fixed structure.

Factor graphs are powerful...

...but they are limited by their fixed structure.

Factor graphs are powerful...

...but they are limited by their fixed structure.

Factor graphs are powerful...

...but they are limited by their fixed structure.

Limitations

Can't represent many models from NLP.

Want a probability model over all possible sentences:
The dog was eating spaghetti.

| hate getting a flat tire.

Nobody wears orange pajamas while playing the accordion.

These sentences have unbounded length.

Can't represent HMMs:

Can't represent HMMs:

Can't represent HMMs:
o @ o G o @]
]

& @ o G o = e |
7 "
w @

Can't represent HMMs:

= ® = O = © =
w

= ® = O O = © =
w oW

Can't represent HMMs:

= @ & G = @ |
D

& @ o G o @ & e |
W @

Can't represent PCFGs:

Can't represent PCFGs:

Solution

Use hyperedge replacement grammars
(Bauderon and Courcelle, 1987; Habel and Kreowski, 1987)

to generate sets of factor graphs

Hyperedge Replacement Grammars

Review: Context-Free (String) Grammars

S—TC
T — aTb
T—e¢
C—cC

C—e¢

generates the language
{a"b"c™|n,m > 0}

S

TC

aTbC
aaTbbC
aaaTbbbC
aaabbbC
aaabbbcC
aaabbbccC

aaabbbcc

10

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

— &
g
¢ W

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

<

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

i m

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

=
Q o=@ O B
N

0

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

E—-¢ &

0

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example
-
O\ C%D%C\ O—D—O\

0

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

E—-¢ &

O O—Bm—@ C D Q
-~ m a
@) C 7 \O
.
—
)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

E—-¢ &

@) O = |

LB T m

@) O

.
—

)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

E—-¢ &

Q O = |
- m
@) O
Q

—
)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

A — [A]—

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

E—-¢ &

Q O—m—@
- m
O o
Q
— Al
)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

E—-¢ &

Q Oo—B—@
[
@ o i
|
Q
- o m
)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

E—-¢ &

Q O = |

- m

@) O

Q
—

)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

E—-¢ &

-~ m "
O C - Q<
Q |
.
)

generates the language

of ring graphs
11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

0

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Hyperedge Replacement Grammars: Example

generates the language

of ring graphs

11

Factor Graph Grammars

Factor Graph Grammars

A factor graph grammar
is a hyperedge replacement grammar

that generates factor graphs

12

A Factor Graph Grammar for HMMs

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for HMMs

D@—

G- =@

13

A Factor Graph Grammar for HMMs

IG

G- =@

13

A Factor Graph Grammar for HMMs

D@—

13

A Factor Graph Grammar for HMMs

=@ &

om-®-@u ~OH
,,, V |

é

13

A Factor Graph Grammar for HMMs

—
"' . |

"
@ @g
@H - =@

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for HMMs

=@ ="
W)

13

A Factor Graph Grammar for HMMs

=@ ="
W)

13

A Factor Graph Grammar for HMMs

(T 8T o @ =
@)

@Ol - @@

13

A Factor Graph Grammar for HMMs

G- =@

13

A Factor Graph Grammar for PCFGs

14

A Factor Graph Grammar for PCFGs

A Factor Graph Grammar for PCFGs

=
5 ®

A Factor Graph Grammar for PCFGs

=
5-®

A Factor Graph Grammar for PCFGs

H\Ni

-4

|

A Factor Graph Grammar for PCFGs
P

"
:

|

A Factor Graph Grammar for PCFGs

E-® ®

(=

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

N
DJ/W\, \m

&=@

,\ 1/ /

- @m d-

" om

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

&=@

@ =
e

/N\TD/ANUE
T

@a

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

A Factor Graph Grammar for PCFGs

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

2]
O
L.
O
(a8

P
3

=

(1]

€

€

(v

.
O
=

o

(o]

=
O

-

o

ha

Q

«
L
<

14

A Factor Graph Grammar for PCFGs

14

More FGG Ideas

What else can you use FGGs for?

e Linear chains of nodes

Anything tree-shaped (phylogeny trees, abstract syntax trees)
e More grammatical formalisms (TAG, LCFRS)
Various types of DAGs (AMRs, control flow graphs, git

commit histories?)

RNA secondary structures

15

Sum-Product in a Factor Graph

16

Sum-Product in a Factor Graph

16

Sum-Product in a Factor Graph

16

Sum-Product in a Factor Graph

16

Sum-Product in a Factor Graph

assignments to
Vo,Vi,..., Ve

To compute sum-product of factor graph: sum over the weights of

all assignments
16

Sum-Product in a Factor Graph Grammar

17

Sum-Product in a Factor Graph Grammar

17

Sum-Product in a Factor Graph Grammar

= @0 ® @®=-® &
X

X m X X

)

To compute weight of assignment: multiply factors together

17

Sum-Product in a Factor Graph Grammar

1"® -0 6 ©-0 o-

X & X X
V4

)

To convert weight to probability: divide by sum-product Z

17

Sum-Product in a Factor Graph Grammar

18

Sum-Product in a Factor Graph Grammar

)

[} @ . 0 i @ o e =
CE)

[} Q . @ i @ o @ i @ |
W W

18

Sum-Product in a Factor Graph Grammar

Z(o-@ o @®)

(3

Sum-Product in a Factor Graph Grammar

Z = Z(ov@ @)+t

(o)

To compute sum-product of factor graph grammar: sum over the
sum-products of all derivations

Inference

Inference

3 cases:

¢ Infinite graph language, finite variable domains:
use extension of variable elimination

e Finite graph language, infinite variable domains:
convert to one big factor graph

e Infinite graph language, infinite variable domains:
undecideable

19

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains

Write down a system of equations that lets us solve for Z:

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains

Write down a system of equations that lets us solve for Z:

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes
e One eq. for each right-hand side + assignment to ext. nodes

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes
e One eq. for each right-hand side + assignment to ext. nodes

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes
e One eq. for each right-hand side + assignment to ext. nodes

€Ty

OE - O—=@ @ H->=@ (@ N
® Z(o—=—@a)-> b @< @ =

[ZIS) P}

20

Inference: Extending Variable Elimination

Can have infinite graphs, must have finite variable domains
Write down a system of equations that lets us solve for Z:

e One eq. for each left-hand side 4+ assignment to ext. nodes
e One eq. for each right-hand side + assignment to ext. nodes

=2 2 —=—@@®

tEeTr w3eWS3

20

Computational Complexity

=2 > =@ @®

tET> w3eWs3

Number of equations: O(|G|m*)

e |G|: number of rules
e m: max size of any variable domain
e k: max # of nodes in RHS

Cases:

e Non-recursive: compute one at a time, O(|G|m*)
e Linear: solve system of linear equations, O(|G|3m3(k+1)

e Otherwise: solve iteratively
21

Querying a Factor Graph Grammar

22

How to observe a value for the second-to-last tag?

= ® = O = ® =
w

r ® = O =« ® O =
w o

r ® = © =« ©® = O = @ =
woow

23

How to observe a value for the second-to-last tag?

23

Instead of identifying variables in the derived graph,

identify variables in the grammar

H-=—@® 5

O-H - @@= 24

Instead of identifying variables in the derived graph,

identify variables in the grammar

H-=—@® 5 H-=—@® 5

- — @)@ = - o=@ —= ,

Instead of identifying variables in the derived graph,

identify variables in the grammar

H-=—@® 5

- ® i

- — @)@ = - o=@ —= ,

Conjunction lets you modularize grammar into two halves:

the original grammar and the query grammar

23

Conjunction lets you modularize grammar into two halves:

the original grammar and the query grammar

E-=@® & B —

H OE- O @H
Q

HE-® @m
()
O — @)= @ = OE-O @

@
)
]

X

® @

23

Conjunction lets you modularize grammar into two halves:

the original grammar and the query grammar

E-=@® & B —

H > oK =
)

()
OHE— @@= - ® @

@
)
]

X

® @

23

Conjunction lets you modularize grammar into two halves:

the original grammar and the query grammar

ES - - ©EE
o =

®
H
()

Ol — O ;

Related Work

Related Work

Lots of previous work generalizing PGMs.

26

Related Work

Lots of previous work generalizing PGMs.

Tractable formalisms:

Case Factor

Plated Factor
Graphs

Diagrams

Sum-Product
Dynamic Graphical
Models

Networks

26

Related Work

Lots of previous work generalizing PGMs.

Expressive formalisms:

Probabilistic
Programming

Probabilistic
Relational

Models Languages

26

Related Work

Lots of previous work generalizing PGMs.

Factor graph grammars:

e General enough to subsume the tractable formalisms

e Simple enough to have tractable inference in many important
cases

26

Ongoing and Future Work

Translating Recursive Probabilistic Programs to Factor Graph

Grammars (PROBPROG 2020)

-
o
David Chiang
dchiang®@nd.edu

Chung-chieh Shan

ccshan@indiana.edu

Chiang, David, and Chung-chieh Shan. “Translating Recursive

Probabilistic Programs to Factor Graph Grammars.” arXiv preprint

arXiv:2010.12071 (2020).

27

Translating Recursive Probabilistic Programs to Factor Graph
Grammars (PROBPROG 2020)

sample a tree from a PCFG
fun d(x) =
case sample p[x] of
inl a =>

unit translates to
| inr yz =>

let u = d(fst(yz)) in
d(snd(yz));
d(s)

28

e Implementation

Approximate inference

Better ways to query FGGs

Automatic structure learning for FGG rules

29

Thank youl!

References

Michel Bauderon and Bruno Courcelle. 1987. Graph expressions
and graph rewriting. Mathematical Systems Theory, 20:83-127.

Annegret Habel and Hans-Jorg Kreowski. 1987. May we introduce
to you: Hyperedge replacement. In Proc. Third International
Workshop on Graph Grammars and Their Application to
Computer Science, pages 15-26.

29

https://doi.org/10.1007/BF01692060
https://doi.org/10.1007/BF01692060

	Factor graphs and their limitations
	Hyperedge replacement grammars
	Factor graph grammars
	Inference: an extension of variable elimination
	Querying a factor graph grammar
	Related work
	Ongoing and future work
	References

