
1

Harnessing second order
optimizers from deep learning
frameworks

Ryan Turner

April 16, 2021

2

Background
● Methods like L-BFGS and conjugate gradient (CG) were the go-to methods in

the pre-deep learning era
○ e.g., minimize.m

● What changed in DL?
○ Huge data sets ⇒ exact gradients infeasible so we needed SGD
○ Luckily in DL tasks, SGD tends to work better anyway

● But, optimization is a broader problem than weights of a deep net
● In other problems with exact gradients, traditional optimization can work

better
● Also, works without hyper-parameter tuning and tricks
● Better handling of constraints

(from controversial NeurIPS 2017 Rahimi and Recht presentation)

3

Examples
● Calibration layers
● Deep dream
● Adversarial examples
● General (OR-style) optimization

○ e.g., portfolio optimization
● etc

4

Motivation (Scenario)
● Have a cool objective function to optimize

○ No giant data ⇒ Nice, we don’t need stochastic gradients
○ Derivatives are complex, several tensors to optimize ⇒ no problem, we

have autodiff
○ Maybe, weird conditioning ⇒ no problem, we have second order

optimizers
● But faced with 2 options:

○ Use autodiff package SGD (the new world):
■ Only simple gradient descent 😞
■ Must tune hyper-parameters 😞
■ Often requires tricks (grad-norm, grad-clip, …) 😞

○ Or scipy optimize (the old world)
■ Many optimization options 😀
■ Principled support for constraints and bounds 😀
■ Only optimizes vectors 😞
■ Doesn’t play nice with autodiff packages 😞

● Was built assuming you write gradients manually

5

In Python, go to is SciPy for 2nd
order optimization
● But it expects a f(x), where x is

ndarray of shape (n,)
● We like the style of TensorFlow/PyTorch

optimization where x = {‘foo’: A, ‘bar’: B, …}
a. And A and B are arbitrary shaped tensors

● Scipy requires:
a. Packing into a vector
b. Converting everything into numpy
c. Even needs to be float64

● Becomes repetitive hassle
● So, dict-minimize can take care of this for you

6

Dict-minimize
● Gives use the dictionary of parameters interface we want
● Provides interfaces too:

○ TensorFlow
○ PyTorch
○ JAX
○ NumPy

● Try it out whenever you can handle exact gradients
● Usually

○ no hyper-parameter tuning is required 😀
○ no gradient manipulation tricks 😀

● People have been conditioned to use SGD in all optimization use cases instead
of where it is needed
○ Try out alternatives when you can

7

Want API simplicity
● Just replace:

from scipy.optimize import minimize

with

from dict_minimize.torch_api import minimize
or
from dict_minimize.tensorflow_api import minimize
or
from dict_minimize.jax_api import minimize
or
from dict_minimize.numpy_api import minimize

● Mirrors the original SciPy API

8

Now Examples!
Rosenbrock in all 4 frameworks here

● Rosenbrock is MNIST of optimization
● Show that all the built in algos work

without tricks

https://github.com/twitter/dict_minimize#example-usage

Apply to DeepDream
● Optimize wrt the input with weights fixed

○ ⇒ no giant dataset ⇒ we can get exact grad
● Visualize neurons in InceptionV3

○ Optimize input w.r.t. activations
● Mid-layers responds to texture
● Another advantage of dict-minimize:

○ Built in support for bounds (pixel must be in [0,1])
○ No clipping tricks

● No hyper-parameters to tune with L-BFGS
○ SGD version requires tricks (gradient norm and gradient clipping)
○ L-BFGS version: just use the actual gradient, no need to manipulate it

with tricks
● Just works

10

Crocodile texture a lab 😮
video

https://blog.twitter.com/engineering/en_us/topics/insights/2021/harnessing-second-order-optimizers-from-deep-learning-frameworks.html

11

Apply to DeepDream

12

pip install dict_minimize

GitHub | Read the Docs | PyPI | Blog

https://github.com/twitter/dict_minimize
https://dict-minimize.readthedocs.io/en/latest/
https://pypi.org/project/dict-minimize/
https://blog.twitter.com/engineering/en_us/topics/insights/2021/harnessing-second-order-optimizers-from-deep-learning-frameworks.html

Thank you

April 16, 2021

