Harnessing second order
optimizers from deep learning
frameworks

Ryan Turner

April 16, 2021

Background

e Methods like L-BFGS and conjugate gradient (CG) were the go-to methods in
the pre-deep learning era
o e.g., minimize.m
e What changed in DL?
o Huge data sets = exact gradients infeasible so we needed SGD
o Luckily in DL tasks, SGD tends to work better anyway
e But, optimization is a broader problem than weights of a deep net
e In other problems with exact gradients, traditional optimization can work

better
e Also, works without hyper-parameter tuning and tricks N
e Better handling of constraints Join B, ||W1Wae — Az|?

(from controversial NeurlPS 2017 Rahimi and Recht presentation)

Examples

Calibration layers

Deep dream

Adversarial examples

General (OR-style) optimization
o e.g., portfolio optimization

etc

Efficient Frontier (BestBuy/AT&T)

Optimal Pomolio—\) ®
-~

~—+—Efficient Frontier
(BestBuy/AT&T)

2.00% 4.00% 6.00% 8.00%

Uncal. - CIFAR-100
ResNet-110 (SD)

700 02 04 06 0

“airliner”

+0.005 x

Motivation (Scenario)

e Have a cool objective function to optimize
o No giant data = Nice, we don’t need stochastic gradients
o Derivatives are complex, several tensors to optimize = no problem, we
have autodiff
o Maybe, weird conditioning = no problem, we have second order
optimizers
e But faced with 2 options:
o Use autodiff package SGD (the new world):
m Only simple gradient descent &
m Must tune hyper-parameters @
m Often requires tricks (grad-norm, grad-clip, ...) &
o Or scipy optimize (the old world)
m Many optimization options @
m Principled support for constraints and bounds @
m Only optimizes vectors &
m Doesn’t play nice with autodiff packages @
y e Was built assuming you write gradients manually

In Python, go to is SciPy for 2nd
order optimization g

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(),
tol=None, callback=None, options=None) [source]
Minimization of scalar function of one or more variables.

Parameters: fun : callable
The objective function to be minimized.

e But it expects a f(x), where x is i ol
n d a '- r ay Of Shape (n ,) where x is an 1-D array with shape (n,) and args is a tuple of the fixed parameters needed to completely
e We like the style of TensorFlow/PyTorch ey unctin

x0 : ndarray, shape (n,)

opti m ization Where x - {‘fOO’: A, ‘bar,: B, () l} Initial guess. Array of real elements of size (n,), where ‘n’is the number of independent variables.
a. And A and B are arbitrary shaped tensors args : tuple,optional
= = . Extra arguments passed to the objective function and its derivatives (fun, jac and hess functions).
1 Sc | py req uires: method : stror callable, optional

a- Packing into a Vector Type of solver. Should be one of

‘Nelder-Mead’ (see here)

b. Converting everything into numpy Powelt (see here)

‘CG’ (see here)

c. Even needs to be float64 hatiovtt i
‘Newton-CG’ (see here)

e Becomes repetitive hassle . LBFGS e e
e So, dict-minimize can take care of this for you ot el

'SLSQP' (see here)
‘trust-constr'(see here)
‘dogleg’ (see here)
‘trust-ncg’ (see here)
‘trust-exact’ (see here)
‘trust-kryloV’ (see here)
y custom - a callable object (added in version 0.14.0), see below for description.
If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending if the problem has constraints or

bounds.

Dict-minimize

e Gives use the dictionary of parameters interface we want
e Provides interfaces too:
o TensorFlow

o PyTorch

o JAX

o NumPy
e Try it out whenever you can handle exact gradients
e Usually

o no hyper-parameter tuning is required @
o no gradient manipulation tricks @
e People have been conditioned to use SGD in all optimization use cases instead
of where it is needed
o Try out alternatives when you can

Want API simplicity

e Justreplace:
from scipy.optimize import minimize

with

from dict_minimize.torch_api import minimize
g:om dict_minimize.tensorflow_api import minimize
?:om dict_minimize.jax_api import minimize
g:om dict_minimize.numpy_api import minimize
e Mirrors the original SciPy API

Now Examples!

Rosenbrock in all 4 frameworks

e Rosenbrock is MNIST of optimization
e Show that all the built in algos work
without tricks

—— (G

—=— BFGS

| —w— L-BFGS-B
=== TNC

—— SLSQP
—=— frust-constr

https://github.com/twitter/dict_minimize#example-usage

Apply to DeepDream

e Optimize wrt the input with weights fixed
o = no giant dataset = we can get exact grad
e Visualize neurons in InceptionV3
o Optimize input w.r.t. activations
e Mid-layers responds to texture
e Another advantage of dict-minimize:
o Built in support for bounds (pixel must be in [0,1])
o No clipping tricks
e No hyper-parameters to tune with L-BFGS
o SGD version requires tricks (gradient norm and gradient clipping)
o L-BFGS version: just use the actual gradient, no need to manipulate it
with tricks
e Just works

ile texture a lab &

10

https://blog.twitter.com/engineering/en_us/topics/insights/2021/harnessing-second-order-optimizers-from-deep-learning-frameworks.html

Apply to DeepDream

pip install dict_ minimize

GitHub | Read the Docs | PyPI | Blog

https://github.com/twitter/dict_minimize
https://dict-minimize.readthedocs.io/en/latest/
https://pypi.org/project/dict-minimize/
https://blog.twitter.com/engineering/en_us/topics/insights/2021/harnessing-second-order-optimizers-from-deep-learning-frameworks.html

April 16, 2021

